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In the field of information visualization, researchers and developers have created 

many types of visualizations, or visual depictions of information.  User interface 

designers often coordinate multiple visualizations, taking advantage of the strengths of 

each, to enable users to rapidly explore complex information.  However, the 

combination of visualizations and coordinations needed in any given situation depends 

heavily on the data, tasks, and users.  Consequently, the number of needed 

combinations explodes, and implementation becomes intractable. 

Snap-Together Visualization (Snap) is a conceptual model, user interface, software 

architecture, and implemented system that enables users to rapidly and dynamically 

construct coordinated-visualization interfaces, customized for their data, without 



 

programming.  Users load data into desired visualizations, then create coordinations 

between them, such as brushing and linking, overview and detail, and drill down. 

This dissertation presents four primary contributions.  First, Snap formalizes a 

conceptual model of visualization coordination that is based on the relational data 

model.  Visualizations display relations, and coordinations tightly couple user 

interaction across relational joins. 

Second, Snap’s user interface enables the construction of coordinated-visualization 

interfaces without programming.  Data users can dynamically mix and match 

visualizations and coordinations while exploring.  Data disseminators can distribute 

appropriate interfaces with their data.  Interface designers can rapidly prototype many 

alternatives. 

Third, Snap’s software architecture enables flexibility in data, visualizations, and 

coordinations.  Visualization developers can easily snap-enable their independent 

visualizations using a simple API, allowing users to coordinate them with many other 

visualizations. 

Fourth, empirical studies of Snap reveal benefits, cognitive issues, and usability 

concerns.  Six data-savvy users successfully, enthusiastically, and rapidly designed 

powerful coordinated-visualization interfaces of their own.  In a study with 18 subjects, 

an overview-and-detail coordination reliably improved user performance by 30-80% 

over detail-only and uncoordinated interfaces for most tasks. 

Snap has proven useful in a variety of domains, including census statistics and 

geography, digital photo libraries, case-law documents, web-site logs, and traffic 

incident data. 



 

 

 

 

A USER INTERFACE FOR COORDINATING 
VISUALIZATIONS BASED ON RELATIONAL SCHEMATA: 

SNAP-TOGETHER VISUALIZATION 
 

 
by 

 
Christopher Loy North 

 

 
Dissertation submitted to the Faculty of the Graduate School of the  

University of Maryland, College Park in partial fulfillment  
of the requirements for the degree of 

Doctor of Philosophy 
2000 

 

 

 

 

Advisory Committee: 
 Professor Ben Shneiderman, Chair 
 Assistant Professor Ben Bederson 
 Professor David Mount 
 Associate Professor Kent Norman 
 Associate Professor Adam Porter 
 

 



 

 

 

 

 

 

 

 

 

 

 

© Copyright by 

Christopher Loy North 

2000 

 

 



 

ii 

 

 

 

 

To  
Jodi 

 

 

 

 

 

 

For  
  Calli♥  

 

 

 

 

 

 

Through  
God 

 



 

iii 

Acknowledgements 

 

First, I thank Ben Shneiderman for advice, encouragement, and inspiration.  Ben has 

been a wonderful advisor to me and major influence in my life.  I could not possibly list 

all that I have learned from him, such as how to do research, give a talk, and work with 

others, as well as HCI content and the primacy of the human in the HCI equation.  His 

encouraging words inspired me to continue when all seemed hopeless.  Clearly, this 

dissertation would not exist without his influence. 

Thanks to my dissertation committee members, Ben Bederson, Dave Mount, Kent 

Norman, and Adam Porter, for many suggestions that have improved this dissertation.  

Ben Bederson provided interesting discussions and reviews, and helped me learn to 

write a good TR.  Kent Norman provided significant advice for the user studies.  Bill 

Gasarch made things fun.  Nancy Lindley was like a mom.  Thanks also to Allan 

Kuchinsky for a thorough draft review. 

I also thank all the members of the Human-Computer Interaction Lab whom I have 

been blessed to work with.  Everything that HCIL produces is a group effort, so credit 

for this dissertation goes to them as well.  Thanks to Catherine Plaisant, Anne Rose, 

Gary Marchionini, Eser Kandogan, Egemen Tanin, Zhijun Zhang, Flip Korn, and Ara, 

Rich, Ninad, Harsha, Khoa, Arkady, Teresa, Janet, Kathy, Jason, Steve, Rohit, Stephan, 

Dan, David, Anita, Laura, Tammara, Julia, Harry, Bob, Allison, Juan-Pablo, Lance, 

Hyunmo, and many others.  I especially acknowledge Anna Fredrikson, Gunjan Dang, 

and Manav Kher for contributions to Snap.  HCIL is a terrific group that I will miss. 



 

iv 

I greatly thank those who funded this research, including the National Library of 

Medicine, NSF, UMIACS, WestLaw, Census Bureau, and Microsoft.  Thanks to Kent 

Marquis at the Census Bureau for enabling the application of Snap to real problems.  I 

thoroughly enjoyed working there with Rich, Lelyn, Betty, Laura, Dave Desjardins, 

Rob Creecy, and Tommy Wright.  Thanks to Eric Malecki, Meds, and Michelle 

Baldonado at PARC for interesting diversions along the way. 

Thanks also to my buddies at Montrose for support and prayers:  Rich, John, Brian, 

Mango, Frank, Todd, Tπ, Hammerdog, Mark, Carl, Skoops, Gary, GReiff, and gang. 

Special thanks to my family and family-in-law.  They are who I am, and I will 

always learn more from them than can be written on paper.  Thanks, Mom.  To Cheri I 

owe life (or I’d still be chasing AI!).  I thank my Dad whose footsteps I strive to follow.  

If I could be just half the man he is. 

Alas, Jodi, by your sacrifice this dissertation has been achieved.  This is your ‘walk’ 

too.  I marvel at all you have accomplished during these years.  In a mere nine months 

you accomplished more than I ever will. 

Most of all, I thank God.  This dissertation was directly inspired by Him.  Without 

Him, I am nothing.  Through Him, all things are possible.  “For the foolishness of God 

is wiser than man’s wisdom, and the weakness of God is stronger than man’s strength.” 

(1 Corinthians 1:25).  Thank you, Lord Jesus. 

 

∃LiJah wαS h∈Re . 

 

 
♥ remember. 



 

v 

Table of Contents 

 

List of Figures ............................................................................................................ix 

Chapter 1: Introduction ............................................................................................1 
1.1 Problem ...........................................................................................................1 
1.2 Snap-Together Visualization ............................................................................7 

1.2.1 Scenario.................................................................................................8 
1.3 Research Questions ........................................................................................11 
1.4 Scope.............................................................................................................12 
1.5 Content ..........................................................................................................12 

Chapter 2: Related Work........................................................................................13 
2.1 Conceptual Models of Coordination...............................................................13 

2.1.1 Object-based vs. Attribute-based Coordination ....................................14 
2.2 Flexibility in Coordinated Visualization .........................................................14 

2.2.1 Data Flexible .......................................................................................15 
2.2.2 Visualization Flexible ..........................................................................16 
2.2.3 Coordination Flexible ..........................................................................18 

2.3 Construction in Visualization .........................................................................23 
2.4 Evaluation......................................................................................................25 
2.5 Summary .......................................................................................................26 

Chapter 3: Model of Visualization Coordination...................................................27 
3.1 Background....................................................................................................27 
3.2 Relational Model of Visualization Coordination.............................................28 

3.2.1 Relational Schemata.............................................................................28 
3.2.2 Snap Model Overview .........................................................................29 
3.2.3 Relations into Visualizations................................................................31 

3.2.3.1 Visualization Actions..............................................................32 
3.2.4 Coordinating Visualizations .................................................................34 

3.2.4.1 One-to-One: Primary-Key to Primary-Key..............................35 
3.2.4.2 One-to-Many: Primary-Key to Foreign-Key............................37 
3.2.4.3 Many-to-One-to-Many: Foreign-Key to Foreign-Key..............38 

3.2.5 Schema Management ...........................................................................38 
3.3 Graph Model of Composite Coordinations .....................................................40 

3.3.1 Commutative .......................................................................................41 
3.3.2 Transitive.............................................................................................41 
3.3.3 Conflict Free........................................................................................44 
3.3.4 Subgraphs ............................................................................................45 

3.4 Applications and Limitations .........................................................................45 
3.5 Extensions to the Model .................................................................................47 

3.5.1 Multiple-Tuple Actions ........................................................................47 
3.5.2 Unions and Intersections ......................................................................48 



 

vi 

3.5.3 Other Foreign-Key Actions ..................................................................49 
3.6 Summary .......................................................................................................50 

Chapter 4: User Interface for Coordination Construction and Operation ...........51 
4.1 Background....................................................................................................51 

4.1.1 Users ...................................................................................................51 
4.1.2 Requirements .......................................................................................52 

4.2 Coordination Construction .............................................................................53 
4.2.1 Relations into Visualizations................................................................53 

4.2.1.1 Visualization Types ................................................................54 
4.2.2 Coordinating Visualizations .................................................................56 

4.2.2.1 Modifying Coordinations ........................................................59 
4.2.2.2 Coordination Suggestion.........................................................59 

4.3 Coordination Operation..................................................................................59 
4.3.1 Bi-Directionality ..................................................................................60 
4.3.2 Propagation..........................................................................................61 

4.4 Additional Features........................................................................................61 
4.4.1 Save Groups ........................................................................................61 
4.4.2 Extract .................................................................................................62 
4.4.3 Search Box ..........................................................................................63 
4.4.4 History.................................................................................................64 
4.4.5 Shopping Basket ..................................................................................65 

4.5 Enhancements ................................................................................................65 
4.5.1 Automatic Query Generation ...............................................................66 

4.5.1.1 Selection .................................................................................66 
4.5.1.2 Projection ...............................................................................66 

4.5.2 Data Compass ......................................................................................67 
4.5.3 Overview Diagram...............................................................................69 
4.5.4 Window Management ..........................................................................70 

4.6 Summary .......................................................................................................70 

Chapter 5: Software Architecture for Visualization Coordination.......................71 
5.1 Architecture Overview ...................................................................................71 
5.2 Visualizations ................................................................................................72 

5.2.1 Goals for Snap-Enabling Visualizations ...............................................73 
5.2.2 Snap Button .........................................................................................74 
5.2.3 Visualization API.................................................................................75 

5.2.3.1 Load Procedure.......................................................................75 
5.2.3.2 Action Procedure ....................................................................76 
5.2.3.3 Action Event...........................................................................76 

5.2.4 Visualization Registration ....................................................................77 
5.2.5 Programming Effort.............................................................................77 

5.3 Coordination ..................................................................................................79 
5.3.1 Data Structures ....................................................................................81 
5.3.2 Algorithm ............................................................................................81 

5.4 Issues and Tradeoffs ......................................................................................82 
5.4.1 Independent vs. Integrated Visualizations ............................................82 
5.4.2 Effort vs. Payoff ..................................................................................84 



 

vii 

5.4.3 Snap vs. Programming .........................................................................84 
5.4.4 Scalability ............................................................................................86 

5.5 Implementation Details ..................................................................................88 
5.6 Extensions .....................................................................................................90 

5.6.1 Packaging and Deploying.....................................................................90 
5.6.2 Collaboration .......................................................................................91 

5.6.2.1 Synchronous Collaboration .....................................................91 
5.6.2.2 Asynchronous Collaboration ...................................................92 

5.6.3 Dynamic Data Consistency ..................................................................92 
5.6.4 Integrating into Operating System........................................................93 

5.7 Summary .......................................................................................................93 

Chapter 6: Evaluation of Coordination Construction and Operation ..................95 
6.1 Evaluation of Coordination Construction .......................................................95 

6.1.1 Procedure.............................................................................................96 
6.1.2 Results ............................................................................................... 100 
6.1.3 User Interface Issues .......................................................................... 102 

6.2 Evaluation of Coordination Operation .......................................................... 104 
6.2.1 Independent Variables........................................................................ 105 
6.2.2 Dependent Variables .......................................................................... 107 
6.2.3 Procedure........................................................................................... 107 
6.2.4 Results ............................................................................................... 108 
6.2.5 Subjective Satisfaction ....................................................................... 111 
6.2.6 Answers............................................................................................. 112 

6.3 Combined Analysis ...................................................................................... 113 
6.4 Summary ..................................................................................................... 114 

Chapter 7: Conclusion........................................................................................... 115 
7.1 Contributions ............................................................................................... 115 
7.2 Uses............................................................................................................. 117 

7.2.1 Users ................................................................................................. 117 
7.2.2 Systems ............................................................................................. 117 

7.3 Benefits ....................................................................................................... 118 
7.4 Limitations and Future Work ....................................................................... 119 
7.5 Conclusions ................................................................................................. 120 

Appendix A: Scenarios .......................................................................................... 121 
A.1 Web-Site Logs ............................................................................................. 121 
A.2 Census Data ................................................................................................. 123 
A.3 Photo Libraries ............................................................................................ 125 
A.4 WestLaw Case-Law Documents................................................................... 126 
A.5 Highway Incident Data ................................................................................ 129 
A.6 Mailing Address Database............................................................................ 130 
A.7 Files and Folders .......................................................................................... 131 
A.8 Stock Market Portfolios ............................................................................... 132 
A.9 Visible Human Images ................................................................................. 133 
A.10 Summary .................................................................................................... 135 

Appendix B: Review of Coordinated-Visualization Systems ............................... 136 



 

viii 

B.1 Select ↔  Select............................................................................................ 137 
B.2 Navigate ↔  Navigate................................................................................... 141 
B.3 Select ↔  Navigate ....................................................................................... 144 
B.4 Summary ..................................................................................................... 151 

Appendix C: User Study Materials ....................................................................... 152 
C.1 Evaluation of Coordination Construction ..................................................... 152 

C.1.1 Background Survey............................................................................ 152 
C.1.2 Verbal Post-Survey ............................................................................ 152 

C.2 Evaluation of Coordination Operation .......................................................... 152 
C.2.1 Data................................................................................................... 152 
C.2.2 Task Sets ........................................................................................... 153 
C.2.3 Questionnaire for User Interface Satisfaction ..................................... 155 
C.2.4 Statistical Results............................................................................... 155 

References     *......................................................................................................... 159 
 

 



 

ix 

List of Figures 

 

Figure 1.1:   Hierarchy visualizations: Outliner, Hyperbolic Tree, Treemap ..................1 
Figure 1.2:   Windows Explorer, three coordinated visualizations..................................2 
Figure 1.3:   Brushing and linking in Spotfire................................................................3 
Figure 1.4:   Overview and detail with web frames........................................................4 
Figure 1.5:   Synchronized scrolling with Logos Bible Software ...................................5 
Figure 1.6:   A coordinated-visualization interface for browsing folders and files. .........6 
Figure 1.7:   Opening visualizations ..............................................................................9 
Figure 1.8:   Coordinating visualizations .......................................................................9 
Figure 1.9:   Specifying the coordination.....................................................................10 
Figure 1.10: Operating the constructed interface .........................................................10 
Figure 2.1:   Overview and detail specification for image browsing.............................13 
Figure 2.2:   Treemap (left), and details pane (top right)..............................................16 
Figure 2.3:   EDV, brushing and linking ......................................................................17 
Figure 2.4:   SAS JMP visualization toolbox menus ....................................................17 
Figure 2.5:   Visage’s SAGE specifying a horizontal bar chart ....................................18 
Figure 2.6:   Apple Dylan with three split and linked frames .......................................19 
Figure 2.7:   Spreadsheet Visualization........................................................................20 
Figure 2.8:   Logos dialog for choosing windows to synchronize scroll .......................20 
Figure 2.9:   DEVise, three bar charts synchronized by date on the X-axis ..................21 
Figure 2.10: DEVise dialog for specifying plot attributes to synchronize.....................21 
Figure 2.11: LinkKit navigating the Visible Human ....................................................22 
Figure 2.12: IBM Data Explorer, data-flow (right) and visualization (left) ..................23 
Figure 2.13: LinkWinds ..............................................................................................24 
Figure 2.14: Constructing coordinated visualizations ..................................................26 
Figure 3.1:   Schema diagram......................................................................................29 
Figure 3.2:   Snap model .............................................................................................30 
Figure 3.3:   Relation visualization (left), single-tuple visualization (right)..................32 
Figure 3.4:   Diagram of a visualization and its actions................................................34 
Figure 3.5:   One-to-one coordination, e.g. brushing and linking .................................35 
Figure 3.6:   Case-law document browser: overview and detail, and synchronized 

scrolling ..............................................................................................................36 
Figure 3.7:   One-to-many coordination, e.g. drill down ..............................................37 
Figure 3.8:   Many-to-one-to-many coordination .........................................................38 
Figure 3.9:   Coordination Graph.................................................................................41 
Figure 3.10: Connected components............................................................................42 
Figure 3.11: Deriving coordinations with transitivity...................................................43 
Figure 3.12: Relationships between image and textual data .........................................46 
Figure 3.13: Brushing and linking with multiple-tuple selection ..................................48 
Figure 4.1:   Snap Menu ..............................................................................................54 
Figure 4.2:   Scrolling list visualization .......................................................................56 



 

x 

Figure 4.3:   Snap Specification dialog ........................................................................57 
Figure 4.4:   Overview and detail ................................................................................60 
Figure 4.5:   Save Group dialog, and Snap Menu opening a group...............................62 
Figure 4.6:   Attribute selector for drag-and-drop data extraction.................................63 
Figure 4.7:   Searching case-law documents ................................................................64 
Figure 4.8:   Snap’s History window ...........................................................................65 
Figure 4.9:   Including attributes in the Snap Menu list of tables..................................67 
Figure 4.10: Data Compass .........................................................................................68 
Figure 4.11: Overview diagram...................................................................................69 
Figure 5.1:   Snap’s software architecture....................................................................72 
Figure 5.2:   Coordination Operation ...........................................................................80 
Figure 5.3:   Software modules....................................................................................90 
Figure 6.1:   User interface specification for exercise 1 ...............................................98 
Figure 6.2:   User interface specification for exercise 2 ...............................................99 
Figure 6.3:   Average user performance time for tasks. .............................................. 109 
Figure 6.4:   User interfaces grouped by user performance in tasks............................ 110 
Figure 6.5:   Average user subjective satisfaction. ..................................................... 112 
Figure A.1:  Web-site logs scenario........................................................................... 123 
Figure A.2:  Census data scenario ............................................................................. 124 
Figure A.3:  Photo libraries scenario ......................................................................... 126 
Figure A.4:  Case-law scenario.................................................................................. 128 
Figure A.5:  Highway incident data scenario ............................................................. 129 
Figure A.6:  Mailing address database scenario ......................................................... 131 
Figure A.7:  Files and folders scenario ...................................................................... 132 
Figure A.8:  Stock market portfolio scenario ............................................................. 133 
Figure A.9:  Visible Human images scenario............................................................. 134 
Figure A.10: Image map in IE ................................................................................... 134 
Figure B.1:  A taxonomy of coordinations................................................................. 137 
Figure B.2:  XmdvTool ............................................................................................. 138 
Figure B.3:  Navigational View Builder .................................................................... 139 
Figure B.4:  Attribute Explorer.................................................................................. 139 
Figure B.5:  LinkKit prototype in Elastic Windows................................................... 140 
Figure B.6:  Synchronized scrolling .......................................................................... 141 
Figure B.7:  SeeDiff .................................................................................................. 142 
Figure B.8:  Neighborhood Viewer ........................................................................... 143 
Figure B.9:  Spreadsheet Visualization...................................................................... 143 
Figure B.10: Overview and detail .............................................................................. 144 
Figure B.11: Simultaneous Menus............................................................................. 145 
Figure B.12: FilmFinder............................................................................................ 146 
Figure B.13: CASCADE........................................................................................... 147 
Figure B.14: Information Mural ................................................................................ 148 
Figure B.15: SeeSoft ................................................................................................. 148 
Figure B.16: PDQ Trees............................................................................................ 149 
Figure B.17: Visible Human Explorer ....................................................................... 150 
Figure B.18: PadPrints .............................................................................................. 151 
Figure C.1:  Overall 3x9 ANOVA statistics for user performance ............................. 155 



 

xi 

Figure C.2:  Mean and standard deviation of user performance times (in seconds) .... 156 
Figure C.3:  Pair-wise t-test comparisons of user interfaces on user performance ...... 157 
Figure C.4:  Overall 3x4 ANOVA statistics for subjective satisfaction ...................... 158 
Figure C.5:  Mean and standard deviation of subjective satisfaction ratings .............. 158 
Figure C.6:  Pair-wise t-test comparisons of user interfaces on subjective satisfaction158 

 



 

1 

Chapter 1:  
Introduction 

 

 

1.1 Problem 

In the field of information visualization, researchers and developers have created 

many types of visualizations, or visual depictions of information [CMS99].  For 

example, to display hierarchical information, one can choose from outliners, Hyperbolic 

Trees [LR96], Treemaps [Shn92], fish-eye views [Fur86], etc.  Each visualization has 

different strengths.  For example, Hyperbolic Trees may be appropriate for deep 

unbalanced hierarchies, whereas Treemaps are helpful when nodes have numerical 

attributes (see Figure 1.1). 

 

           

Figure 1.1:   Hierarchy visualizations: Outliner, Hyperbolic Tree, Treemap 

 

User interface designers often coordinate multiple visualizations, taking advantage 

of the strengths of each, to create even more powerful information exploration 
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environments [Shn98] [BWK00].  This technique is particularly potent when the 

information is sufficiently complex to require different types of visualizations for 

different aspects or layers.  A simple example interface is Microsoft’s Windows 

Explorer (Figure 1.2), which employs 3 visualizations to browse hierarchical file 

systems:  an outliner visualization of the folders, a tabular visualization of the files in 

the selected folder, and a textual visualization of the details of the selected file including 

a miniature quick-view. 

 

 

Figure 1.2:   Windows Explorer, three coordinated visualizations 

 

Visualizations can be coordinated in a variety of ways.  In information-exploration 

interfaces, some common types of visualization coordinations [NS97] are: 

• Brushing and linking:  An exploratory data analysis (EDA) technique used 

when displaying a set of data items in multiple visualizations.  When users select 

items in one visualization, those items are automatically highlighted in all the 
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visualizations.  A common example is brushing scatter plots [BC87].  For 

example, Figure 1.3 shows census data in Spotfire [AW95], a commercial data 

analysis package.  Selecting the states with low percentages of high school and 

college graduates in the left plot reveals that those states also have low income 

and high unemployment levels in the plot on the right. 

 

 

Figure 1.3:   Brushing and linking in Spotfire 

 

• Overview and detail:  Selecting an item in the overview visualization navigates 

the detail visualization to the corresponding details.  Items are represented 

visually smaller in the overview.  This provides context and allows direct access 

to details.  For example, web designers often add a table-of-contents frame to a 

large document.  Users can then select a section title to scroll the main frame 

immediately to that section.  In Figure 1.4, the user has selected the “Financial 

Information” section of the Graduate Catalog. 
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Figure 1.4:   Overview and detail with web frames 

 

• Drill down:  Allows users to navigate down successive layers of a hierarchical 

database.  Selecting a parent item in one visualization loads children items into 

another visualization, as in Windows Explorer.  This enables exploring very 

large-scale data, by displaying aggregates in one visualization and the contents 

of the selected aggregate in another visualization [FNP99]. 

• Synchronized scrolling:  Users can conveniently scroll through multiple 

corresponding data sets.  Examples include alternate translations, music, and 

information with summaries or annotations.  In Figure 1.5, users of Logos Bible 

Software [Log93] can simultaneously scroll through multiple bible translations 

and commentaries by chapter and verse.  This speeds users’ tasks such as 

making comparisons or examining from multiple points of view. 
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Figure 1.5:   Synchronized scrolling with Logos Bible Software 

 

A coordinated-visualization user interface is defined as a set of visualizations and a 

set of coordinations between the visualizations.  In the literature, the phrase ‘multiple 

views’ is often used instead but sometimes refers strictly to the brushing-and-linking 

coordination.  Hence, this dissertation uses ‘coordinated visualizations’ to refer to the 

more general definition and to reflect the focus of this research on visualization. 

Many coordinated-visualization interfaces have been implemented.  However, two 

confounding problems arise.  First, the set of visualizations and coordinations needed in 

any given situation depends heavily on: 

• data:  different data sets have different features and structure. 

• tasks:  what does the user want to accomplish with the data?  

• users:  there is tremendous variation between users in individual user 

preferences, experience levels, etc. 

For example, while Windows Explorer is helpful for some users and tasks, system 

administrators may need alternate visualizations.  Replacing the outliner visualization of 
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folders with a scatter plot of the folders would enable administrators to quickly spot 

large old folders for archival.  In Figure 1.6, the scatterplot and hyperbolic tree display 

the folders, enabling users to examine size and date trends as well as hierarchical 

structure.  Selecting a folder displays its files in the tabular visualization.  Selecting a 

file displays its contents in the file viewer. 

 

 

Figure 1.6:   A coordinated-visualization interface for browsing folders and files. 

 

Secondly, the implemented visualizations are typically not programmed to 

coordinate together.  Hence, these alternate combinations usually require custom 

development.  Researchers stumble over this problem often, and must constantly re-
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implement coordinations between new unforeseen combinations of visualizations.  

Unfortunately, this is a poor solution to the problem.  Even with good component-based 

design, these hard-coded combinations are inflexible and difficult to construct. 

Clearly, the number of needed combinations of visualizations and coordinations 

explodes exponentially, and implementation becomes intractable.  Hence, the control of 

the choice of coordinated-visualization interface needs to be in the hands of the users.  

A lightweight mechanism is needed to allow end-users to easily “snap” individual 

visualizations together into custom combinations.  This must not be a toolkit that 

requires programming, but a user interface. 

1.2 Snap-Together Visualization 

Snap-Together Visualization (Snap) [NS00a] is a conceptual model, user interface, 

architecture, and implemented system developed to meet these needs.  Snap enables 

data users to rapidly and dynamically mix and match visualizations and coordinations to 

construct custom exploration interfaces without programming.  Snap is flexible in data, 

visualizations and coordinations.  Snap focuses on (a) interconnecting the visualization 

tools created by researchers and developers in the field to (b) construct coordinated-

visualization interfaces for rapid exploration and navigation of data and relationships. 

Snap is based on the relational data model.  To explore a database, users first 

display relations (tables or query results) in visualizations.  Then they construct 

coordinations by specifying actions to tightly couple between the visualizations.  

Visualization developers can easily make their independent visualizations snap-able 

using a simple API. 
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1.2.1 Scenario 

This scenario demonstrates step-by-step how Snap is used to construct the file-

folder browser for system administrators as described in the example in the introduction 

(see [NS99] video for dynamic interaction).  First, the database containing the folder 

and file information is opened with Snap.  The Snap Menu window (Figure 1.7) 

displays the list of tables and queries in the database (left), as well as a list of available 

visualization types (right).  To view the folders in a Spotfire scatter plot, the table 

containing folder information is dragged from the list and dropped onto the scatter plot 

button.  The plot opens, loads, and displays the folders.  Choosing ‘creation date’ for the 

X-axis and ‘size’ for the Y-axis establishes the desired visualization.  Now it is easy to 

spot the large old folders in the upper left of the plot.  Of course, users need to see the 

files contained in the folders.  Dragging the query that extracts only the files within a 

given folder, and dropping it onto the tabular visualization button opens the new 

visualization.   

Each visualization window is adorned with a snap button .  To coordinate 

the visualizations, the snap button is dragged from the plot to the tabular visualization 

(Figure 1.8).  The Snap Specification dialog (Figure 1.9) then displays the available 

actions in each visualization that can be tightly coupled.  Choosing the ‘select’ action in 

the plot and the ‘load’ action in the tabular visualization specifies that selecting a folder 

in the plot should load and display the files in that folder into the tabular visualization.   

Now, construction of the coordinated-visualization interface is complete (Figure 

1.10).  Users can browse by simply selecting folders in the plot and viewing contents in 

the tabular visualization, like Windows Explorer. 
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Additional visualizations could be added to further improve the interface (as in 

Figure 1.6).  For example, if the context of the folders in the hierarchical structure is 

important, then users might load the folders into Inxight’s Hyperbolic Tree.  They could 

coordinate this to the scatter plot so that selecting a folder in either visualization would 

also select and highlight it in the other.  To examine the contents of many files, users 

could coordinate a file viewer onto the tabular visualization. 

 

 

Figure 1.7:   Opening visualizations 

 

 

 

Figure 1.8:   Coordinating visualizations 
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Figure 1.9:   Specifying the coordination 

 

 

Figure 1.10: Operating the constructed interface 
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1.3 Research Questions 

In providing Snap as a solution to the stated problem, this research must provide 

answers to several important questions. 

First, the concept of visualization coordination is not well understood.  Coordination 

has been only loosely viewed as a form of interaction.  There has been no categorization 

of types of coordination, nor formal theory of coordination.  Already the above 

definition of a coordinated-visualization interface is a significant advance in 

understanding the concept.  How can visualization coordination be formally modeled? 

Second, how can end-users construct their own coordinated-visualization interfaces 

without programming?  What user interface will enable them to accomplish this? 

Third, how can the software architecture provide such flexibility, and enable the use 

of independent visualization tools developed by others?  The effort required by 

visualization developers to enable their tools must be minimized, while maximizing the 

functionality available to users. 

Finally, empirical evaluation is needed to understand users ability to construct and 

operate coordinated visualizations.  Do users understand coordination between 

visualizations?  Can they construct their own coordinated-visualization environments to 

support their tasks?  Can they use it to their benefit?  If there is a benefit, why and what 

are the critical aspects of the coordinated visualizations that causes improvement?  In 

general, user interface design requires significant expertise, but Snap puts some design 

capability in the hands of users.  Can users essentially design their own user interfaces 

for information exploration by snapping together appropriate visualizations? 
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1.4 Scope 

Snap focuses on coordinations between visualizations for information exploration.  

Snap does not address other classes of tasks such as data input or editing.   

Snap focuses on the common types of data and visualizations that are typically 

encountered in the field of information visualization, such as databases, file directories, 

statistical tables, etc.  It is less concerned with scientific visualization applications 

which are often more oriented towards image processing. 

Snap focuses on common coordinations for information exploration.  There are 

other kinds of coordination for data manipulation consistency, dynamic data, 

collaboration, etc. 

1.5 Content 

Chapter 2 reviews related literature, and provides a framework of the space that 

Snap fits within.  Chapter 3 describes Snap’s foundational model of visualization 

coordination.  Chapter 4 describes Snap’s user interface for coordination construction.  

Chapter 5 describes Snap’s architecture that enables independent visualization tools.  

Chapter 6 details two empirical studies of coordination construction and operation.  

Chapter 7 concludes with benefits, limitations, contributions, and future work.  

Appendix A demonstrates Snap with several additional scenarios to show its breadth 

and usefulness.  The file-folders scenario presented above (Figure 1.6) is used 

throughout the dissertation for examples. 

 

 

 



 

13 

Chapter 2:  
Related Work 

 

 

2.1 Conceptual Models of Coordination 

Previous work on multiple window strategies [Shn98], [NWS86], [SSS86], 

[WH87], [CPF84], [Woo84] have loosely characterized a few examples of coordination.  

In statistical graphics, the brushing-and-linking coordination has been formally defined 

[BC87] and software architectures specified [MSB90].  In general, these systems add a 

color attribute to the underlying data records.  Brushing a data point modifies the color 

attribute of its record, and affects its display in other plots.  In the image-browsing 

domain, the overview-and-detail coordination has been formally defined [PCS95] using 

constraints between a field-of-view box in the overview and the panning scroll bars in 

the detail (Figure 2.1). 

 

 

Figure 2.1:   Overview and detail specification for image browsing 
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2.1.1 Object-based vs. Attribute-based Coordination 

In general, coordination in information visualization can operate as either object-

based or attribute-based.  In object-based coordination, users interact with individual 

data objects such as folders and files, data points, etc.  Brushing and linking data points 

is an example.  Yet, while object-based coordination is the more common form of 

interaction, no formal model comprehensively describes the behavior of the common 

coordinations in the object-based approach. 

In attribute-based coordination, users interact with the attribute space containing the 

data objects.  This has two primary uses: spatial navigation and filtering.  Spatial 

navigation in 2D and 3D spaces is used in coordinating the panning and zooming of 

data plots with common axes and image browsers, based on attribute ranges.  Filtering, 

as in Dynamic Queries [AS94], enables selection or elimination of data points by 

specifying attribute ranges in queries.  These applications have been well specified. 

Snap focuses on object-based coordination, because it is the more common form of 

interaction and of more general utility to information visualization, and has not been 

well explored.  Object-based coordination is more general in terms of supporting many 

different types of data and visualizations. 

2.2 Flexibility in Coordinated Visualization  

Systems with coordinated-visualization user interfaces can be classified by their 

level of flexibility in data, visualizations, and coordinations: 

1. Data flexible:  users can load their own different data sets into the 

visualizations. 
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2. Visualization flexible:  users can choose different sets of visualizations as 

appropriate for the data. 

3. Coordination flexible:  users can choose different types of coordinations 

between pairs of visualizations as needed for exploring or navigating 

relationships in the data. 

Some systems are not intended for flexibility.  For example, Windows Explorer 

always displays the same data set (the hard drive file structure), with the same 

visualizations and coordinations. 

2.2.1 Data Flexible 

Most systems are at the first level of flexibility.  They are flexible for data but not 

for visualizations or coordinations.  Users can load their own data, but are always 

presented with the same hard-coded coordinated-visualization interface. 

For example, the Treemap visualization tool (Figure 2.2) can load and display any 

hierarchical data set of users’ choosing, but remains constant in its pair of visualizations 

(the Treemap visualization and the details pane) and the coordination between them 

(selecting a node in the Treemap displays associated data in the details pane). 

Many data-flexible systems have been implemented, covering a variety of domains.  

Appendix B provides a taxonomy of these systems, based on the types of coordinations 

they use, with descriptions of many of the systems. 
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Figure 2.2:   Treemap (left), and details pane (top right) 

 

2.2.2 Visualization Flexible 

At the second level of flexibility, systems are flexible in choice of visualizations 

(and data).  However, users cannot establish a different type of coordination between 

two visualizations with these systems. 

Exploratory data analysis (EDA) systems, such as Datadesk [Vel88], SAS 

Insight/JMP, EDV [EW95] (Figure 2.3), and Spotfire [AW95], display a data table in 

many different types of visualizations of users’ choosing such as scatter plots, bar charts 

or histograms.  All the visualizations are coordinated for brushing-and-linking, allowing 

users to relate data points across visualizations.  These systems provide a toolbox of 

visualizations that users can choose from (as in Figure 2.4).  In each of these systems, 

the brushing-and-linking coordination is a fixed and global operation in their interfaces.  
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Some systems such XGobi [BCS96] let users specify many options for the brushing, 

such as accumulation, color, glyphs, etc. 

 

 

Figure 2.3:   EDV, brushing and linking 

 

 

Figure 2.4:   SAS JMP visualization toolbox menus 
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In databases, Visage [RLS96] extends the brushing coordination to multiple tables 

by brushing across relational joins.  With Visage’s “information-centric” approach, 

users can drag-and-drop data items between visualizations to display them in different 

ways.  The Visage VQE [DRK97] component also coordinates dynamic queries across 

all visualizations within a VQE window.  The Visage SAGE component (Figure 2.5) 

generates different types of visualizations.  Users specify the visualization by 

associating data attributes with visual elements. 

 

 

Figure 2.5:   Visage’s SAGE specifying a horizontal bar chart 

 

2.2.3 Coordination Flexible 

At the third level of flexibility, systems are flexible in the coordinations between 

visualizations (and generally flexible in data and visualizations too).  There are two 

kinds of flexibility in coordination:  choosing the visualizations to coordinate, and 

specifying the type of coordination between them. 
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Most of these systems provide only one type of coordination but let users choose 

which visualizations to coordinate.  The Apple Dylan programming environment 

[DP95] (Figure 2.6) lets users browse hierarchical object-oriented programs by splitting 

and linking frames so that selecting a folder in one frame displays its contents in the 

other frame (e.g. generalized Windows Explorer).  To link frames, users drag the 

‘output arrow’ from one frame to the ‘input arrow’ of another frame.  Spreadsheet 

Visualization [CBR97] (Figure 2.7) arranges many small 3D visualizations as cells in a 

2D grid.  Then, users can select a whole row or column of visualizations to synchronize 

their 3D navigation.  With Logos Bible Software, users can coordinate scrolling text 

windows of different translations and commentaries to synchronize scroll based on 

chapter and verse.  Users select from a window list to synchronize one window to 

another (Figure 2.8). 

 

 

Figure 2.6:   Apple Dylan with three split and linked frames 
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Figure 2.7:   Spreadsheet Visualization 

 

 

Figure 2.8:   Logos dialog for choosing windows to synchronize scroll 

 

DEVise [LRB97] allows users to select some different types of coordinations 

between visualizations.  In plots with common axes, users can synchronize panning and 

zooming between plots or create a field-of-view box in one plot to control another 

(Figure 2.9, Figure 2.10).  Users can also establish set operations between visualizations 

so that the data in several visualizations can be combined and displayed in another 
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visualization.  Various menus and dialog boxes are used to establish these 

coordinations.  It is interesting that the mechanisms for establishing each type of 

coordination are very different in the DEVise user interface.  As in Visage, users create 

visualizations by mapping data attributes to visual elements. 

In the image-browsing domain, LinkKit [Nor98] (Figure 2.11) allows users to 

display and coordinate different 2D views of the Visible Human 3D image data.  Users 

can coordinate views for orthogonal slicing, synchronized slicing, and panning by field-

of-view box. 

 

 

Figure 2.9:   DEVise, three bar charts synchronized by date on the X-axis 

 

 

Figure 2.10: DEVise dialog for specifying plot attributes to synchronize 



 

22 

 

 

Figure 2.11: LinkKit navigating the Visible Human 

 

Snap builds on these systems.  It borrows Visage’s information-centric approach 

(object-based), making individual information items the basis of coordination rather 

than 2D information-space axes as in DEVise or LinkKit (attribute-based).  Snap uses a 

drag-and-drop action similar to Apple Dylan to select visualizations to coordinate.  

However, Snap’s coordination model, specification user interface, software architecture 

and ultimate purpose are unique.  Snap allows users to construct a variety of common 

coordinations quickly and easily. 

Snap also differs in its use of independent visualizations.  Each of these systems 

uses a fully integrated architecture, in which visualizations are implemented within the 

system itself.  Snap’s architectural approach is similar to that of the Cyberdesk 

prototype [DAP97], which allows users to select text in any window and then choose a 

“service”, such as a web search or address book application, to display search hits for 

that text.  Independent applications can easily register themselves as an available 

service. 
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2.3 Construction in Visualization 

There are a variety of other approaches used for construction in visualization 

environments. 

In scientific visualization, data-flow systems such as ConMan [Hae88], AVS, and 

IBM Data Explorer (Figure 2.12), also employ a form of dynamic linking, but for a 

different purpose.  Users link a variety of modules to create custom data processing and 

visualization pipelines, much like pipes on the Unix command line.  Complex data 

structures are passed between modules.  Some modules computationally transform the 

data before passing it on, and some display the data graphically.  In contrast, Snap 

focuses on coordinating user interaction in visualizations.  Snap coordinations transmit 

interaction rather than data, and coordinations are bi-directional like constraints rather 

than pipes. 

 

Figure 2.12: IBM Data Explorer, data-flow (right) and visualization (left) 
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Filter-flow systems such as Linkwinds [JBO94] (Figure 2.13) behave similar to 

data-flow systems, but provide interactive data filtering capability.  Users link dynamic 

query filter controls and visualizations in a pipeline network.  Selecting attribute ranges 

in a control or visualization filters the data displayed downstream in the pipeline. 

 

 

Figure 2.13: LinkWinds 

 

Constraint-based tools allow users to construct interactive displays by specifying 

various mathematical relationships between objects.  These systems are generally 

intended for specification of more complex interaction within a visualization.  For 

example, with ThingLab [Bor86] users can construct complex interfaces that respond to 

direct manipulation interaction.  [HM90] provides a simplified constraint-based 

specification for visual layout of objects in a user interface that adjusts to resizing. 
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LiveDocs [MHG00] and InfoStill [CHH99] allow authors to easily publish 

visualizations as interactive data reports.  Authors can place a few different types of 

data plots (coordinated for brushing and linking) within context on a web page, and use 

hypertext links to invoke various saved states of the visualizations. 

At the opposite end of the spectrum from Snap are visualization programming 

toolkits.  Toolkits provide programmers with a library of reusable visualization 

primitives.  However, coordination beyond brushing-and-linking is rarely included as a 

primitive.  Amulet [MMM97] includes constraint capabilities that can be helpful for 

implementing coordinations, but are still at the programmer level.  Technologies such as 

COM and CORBA [Vin97] are improving programmers’ capability to establish 

communication between independent applications, a key ingredient for coordinating 

independent visualizations. 

2.4 Evaluation 

Little work has been done to study and evaluate the use of coordinated 

visualizations.  Several empirical studies have compared specific coordinated-

visualization interfaces to other approaches such as fish-eye visualizations and detail-

only visualizations for browsing hierarchies [CS94] [SSS86] and large 2D spaces 

[BW90] [PCH92].  In general, these studies indicate an advantage of coordinated 

visualizations over single detail-only visualizations.  However, the studies did not 

determine why or what aspect of the coordinated visualizations caused improved 

performance.  Was it the additional information displayed in the multiple visualizations 

or the interactive coordination between them? 
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Even less is known about users’ ability to construct such coordinated exploration 

environments.  Usability work on Apple Dylan [DP95] indicates that once users were 

shown how to split and link its frames, they were able to remember it.  Users were 

successful with Dylan’s single type of data, visualization, and coordination.  However, 

will that carry over to a general coordinated-visualization environment?  Can users 

grasp the notion of establishing different types of coordinations between different types 

of visualizations?  Can users construct appropriate interfaces for themselves this way?  

Clearly, a deeper level of understanding about users and coordination is needed. 

2.5 Summary 

These systems provide a foundation of visualization coordination and flexibility that 

Snap builds on (see Figure 2.14).  Snap is a coordination-flexible level system, 

providing flexibility in data, visualizations, and coordinations.  Snap users can construct 

many common types of coordinations, more than the brushing-and-linking provided by 

Visage and its cousins.  It also uses the object-based approach, which enables more 

general utility for information visualization interfaces than the attribute-based approach 

of DEVise.  In addition, Snap employs independent visualizations, enabling it to be 

easily extended by others, whereas each of these systems is monolithic. 

 Independent 
visualizations 

Integrated 
visualizations 

Data  
Flexible 

COM, CORBA Toolkits, C++ 

Visualization 
Flexible 

Snap EDA systems, 
Visage 

Coordination 
Flexible 

Snap DEVise 
(attribute-based) 

 
Figure 2.14: Constructing coordinated visualizations 
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Chapter 3:  
Model of Visualization Coordination 

 

 

3.1 Background 

Snap-Together Visualization is based on a strong underlying model of visualization 

coordination (the Snap model).  The goal of this model is to provide a sound theoretical 

foundation on which the Snap system, user interface, and software architecture can 

operate.  It must have sufficient generality to support: 

• common types of information, such as numeric, textual, hierarchical, etc. 

• common types of visualizations from the field. 

• common types of coordinations for information exploration. 

The model must also maintain sufficient simplicity to remain in harmony with the 

practical architectural goals of integrating independent visualizations.  The Snap model 

formally defines a visualization, coordination, and a coordinated-visualization interface. 

In the search to develop this model, several attempted models of coordination were 

explored but discarded due to their inability to provide a generalizable solution.  These 

included: 

• Filter model:  a network of filters between visualizations. 

• Widget model:  user-interface widgets linked using mathematical functions, like 

constraints. 

• User input model:  mouse clicks in one visualization are translated to clicks in 

another visualization. 
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Two critical realizations led to the development of the current model:  First, the 

recognition of coordination as a visualization problem.  That is, coordination deals with 

each visualization as a whole, not just individual widgets or components within 

visualizations.  Since a visualization is a view of data, it is essentially the data that is 

being coordinated.  Hence, coordination is data dependent. 

Second, the recognition of the need for a strong underlying data model to enable a 

strong coordination model.  For example, Isakowitz was successful with RMM [ISB95] 

because he used a strong underlying relational data model to drive the construction of a 

web site’s pages and hyperlinks. 

3.2 Relational Model of Visualization Coordination 

The Snap model is based on the relational data model.  The relational data model 

provides several benefits: 

• A popular, well-defined, and general-purpose data format. 

• Consistency with common visualization practice. 

• Unique identifiers (primary-key values) for tuples. 

• Well-defined data extraction capability (queries). 

• Explicit representation of relationships (joins). 

3.2.1 Relational Schemata 

With the Snap model, coordinated-visualization interfaces can be constructed to 

explore relational data.  The data is composed of a set of relations, each of which 

contains a set of tuples.  Each relation specifies a list of attributes for which its tuples 

contain values.  Each relation has a primary-key attribute, whose values uniquely 

identify each tuple in the relation.  Relations may also have a set of foreign-key 
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attributes, each of which relates tuples in its relation to tuples in another relation via 

joins.   

Actually, the pure relational data model does not explicitly code the primary-key 

and foreign-key join relationships between relations.  The relationships are only evident 

when join queries are defined.  However, modern relational database management 

systems such Microsoft Access and Oracle do explicitly specify the relationships in 

schema diagrams and store them in the form of constraints.  A schema diagram shows 

the relations and their attributes as nodes, and the join relationships as edges between 

them.  For example, Figure 3.1 shows the Access schema diagram of the file-folders 

database from the example in Chapter 1.  There is a one-to-many relationship from 

folders to files. 

 

 

Figure 3.1:   Schema diagram 

 

3.2.2 Snap Model Overview 

With the Snap model, coordinated-visualization interfaces for relational data are 

constructed based on the data schema.  There is a direct correspondence between 
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concepts in the relational data model and concepts in coordinated-visualization user 

interfaces (see also Figure 3.2): 

Relational Data Model  Coordinated-Visualization User Interface 

Relation = Visualization 

Tuple = Item in a visualization 

Primary key = Item ID 

Join = Coordination 

In Snap, a visualization displays a relation.  Coordination between two 

visualizations is based on the join relationship between their relations.  This is 

somewhat similar to RMM [ISB95], which generates hyperlinks based on join 

relationships. 

 

  

Table: 
Folders 

Table: 
Files 

1 M

Viz: 
Plot 

Viz: 
Tabular 

Coordination 

Load 

Join 

Select 

Relational 
Data: 
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Figure 3.2:   Snap model 
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3.2.3 Relations into Visualizations 

In the Snap model, a visualization is defined as the use of a visualization type (e.g. 

scatter plot, Treemap, etc.) to display a single relation from the data.  Hence, a 

visualization is defined as the pair: 

Visualization = (visualizationType, relation) 

 There are two classes of visualizations: 

• Relation visualizations:  In the common case, a relation of many tuples is 

displayed in the visualization. Generally, each tuple in the relation is depicted as an 

individual item in the visualization.  For example, a scatter plot displays each tuple as a 

dot using two of its attributes as the coordinates (Figure 3.3).  A tabular visualization 

displays each tuple as a row.  The relation must have a primary-key attribute to uniquely 

identify individual tuples. 

• Single-tuple visualizations:  A single tuple is displayed in the visualization.  

This type of visualization is often used in two common situations:  First, a textual 

visualization used as the detail view in a details-on-demand coordination to display all 

the attributes of a single tuple selected in another graphical visualization (Figure 3.3).  

Second, one or more of the tuple’s attribute values are used to locate and display 

information stored external to the data.  For example, a web browser displays a web 

page given its URL, or a file viewer displays a file given a pathname.  These are output-

only visualizations. 
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Figure 3.3:   Relation visualization (left), single-tuple visualization (right) 

 

3.2.3.1 Visualization Actions 

Visualizations are interactive.  Each visualization supports a set of actions that can 

be performed on individual tuples.  These actions can be invoked interactively by users, 

allowing them to indicate interest in a tuple, or programmatically by the system.  These 

actions are called primary-key actions, because the tuple acted on can be identified by 

its primary-key (PK) value. Example actions include:   

• Select:  select a tuple to visually highlight it.  For example, clicking on a dot in a 

scatter plot colors the dot bright yellow. 

• Scroll, zoom, etc:  navigating to a tuple to bring it to the center of view.   For 

example, scrolling a textual list to bring an item to the top of the window, or 

zooming onto a node in a Treemap, or centering the focus on an item in a fish-

eye visualization. 
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Since actions are visualization dependent, each visualization defines the set of 

actions it supports (providing a name for each action) according to the interaction 

mechanics of the visualization’s user interface.  In general, visualizations have two 

types of actions:  selection actions and navigation actions.  For example, Treemap has 

three actions: 

• Select click:  clicking on a node highlights it with a yellow rectangle. 

• Select mouse-over:  moving the mouse over a node highlights it with a white 

rectangle. 

• Zoom:  double-clicking a node zooms that node to fill the view. 

In addition, each visualization also has a load action.  The load action loads and 

displays only the specified tuple(s) from the relation into the visualization.  When used 

as a primary-key action, a single tuple identified by its primary-key value is loaded into 

the visualization.  This is used with single-tuple visualizations. 

The load action can also be used as a foreign-key action.  In this case, multiple 

tuples, identified by the value of one of their foreign-key (FK) attributes, are loaded into 

the visualization.  The specified value is thus a primary-key value of a tuple in a joined 

relation, and hence the loaded tuples are all related to that tuple. 

When a load action is invoked, the visualization is first cleared so that only the 

tuples from the current load action are displayed.  This enables a visualization to be 

used to display different portions of a large relation based on external input.  If the load 

action is not used, then the entire relation is displayed in the visualization. 

Hence, an action invocation can be expressed as a triple: 

Invocation = (visualization, action, PKvalue) 
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That is, action is invoked in visualization on a tuple identified by PKvalue.  If the 

action is load, then it must also specify primary-key or foreign-key action.  Foreign-key 

actions specify the foreign-key attribute to use.  E.g. load(PK), or load(FKi). 

 

 Visualization
 
(Relation) 

Select (PK) 

Scroll (PK) 

Load  
(PK, FKi) 

Primary/foreign-
key values …  

 

Figure 3.4:   Diagram of a visualization and its actions 

 

3.2.4 Coordinating Visualizations 

In the Snap model, a coordination tightly couples an action in one visualization to 

an action in another visualization.  Thus, when users invoke the former action, Snap 

automatically invokes the latter, and vice versa.  The tuples acted on in each 

visualization are related by the join between their relations.  When users invoke one of 

the actions, joining the visualizations’ relations determines the corresponding tuples to 

act on in the other visualization. 

Hence, a coordination is defined as an action-invocation pair: 

Coordination =  

   ((visualization1, action1, PKvalue), (visualization2, action2, PKvalue)) 

The PKvalue is bound between the two invocations.  Since this can be assumed, the 

short-hand notation is: 

Coordination = ((visualization1, action1), (visualization2, action2)) 
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A coordination between a pair of visualizations is established by choosing the 

actions to tightly couple.  The join relationship between the visualizations’ relations 

determines which of the three possible combinations of primary-key and foreign-key 

actions can be used: 

3.2.4.1 One-to-One: Primary-Key to Primary-Key 

This is a primary-key to primary-key relationship, and is often the result of 

displaying different projections of the same table in multiple visualizations.  A primary-

key action in one visualization can be tightly coupled to a primary-key action in the 

other, linking their primary-key values.  Hence, when one of the actions is invoked, the 

other is also invoked on the same primary-key value. 

 

Visualization

(Relation)

Select (PK)

Scroll (PK)

Load (PK)
…

Visualization

(Relation)

Select (PK)

Scroll (PK)

Load (PK)
…

 

Figure 3.5:   One-to-one coordination, e.g. brushing and linking 

 

Examples of one-to-one type coordinations, from Chapter 1, are: 

• Brushing and linking:  

Coordination:  ((visualization1, select), (visualization2, select)) 

Operation:  Selecting an item in one visualization also selects (highlights) the 

corresponding item in the other visualization.  For example, in the file-folder 

example in Chapter 1, selecting a folder in the Hyperbolic Tree highlights that 

folder in the scatter plot.  Figure 3.5 shows the coordination specification. 
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• Overview and detail:  

Coordination:  ((overview, select), (detail, scroll)) 

Operation:  Selecting an item in the overview scrolls (or more generally 

navigates) the detail visualization to the details of that item.  Likewise, scrolling 

the detail selects the currently viewed item in the overview.  For example, in 

Figure 3.6, selecting a document section from the list on the left jumps the 

scrolling document text on the right to that section. 

• Synchronized scrolling: 

Coordination:  ((visualization1, scroll), (visualization2, scroll)) 

Operation:  Scrolling through a list of tuples in one visualization also scrolls to 

corresponding items in another visualization.  For example, in Figure 3.6, 

scrolling the document text on the right also scrolls the document annotations in 

the center to the corresponding section. 

 

Figure 3.6:   Case-law document browser: overview and detail, and synchronized 
scrolling 
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3.2.4.2 One-to-Many: Primary-Key to Foreign-Key 

A primary-key to foreign-key relationship indicates a hierarchical structure between 

the relations.  Each parent tuple in the first relation has many child tuples in the second 

relation.   

The allowable combination is:  tightly couple a primary-key action in the 

visualization on the One side of the relationship with a foreign-key action on the Many 

side.  This links the primary-key value of the primary-key action to the foreign-key 

value of the foreign-key action.  When the primary-key action is invoked, the foreign-

key action is also invoked using the primary-key value as the foreign-key. 

 

Visualization

(Relation)

Select (PK)

Scroll (PK)

Load (PK)
…

Visualization

(Relation)

Select (PK)

Scroll (PK)

Load (FK)
…

 

Figure 3.7:   One-to-many coordination, e.g. drill down 

 

A common coordination for this relationship type is: 

• Drill down: 

Coordination:  ((parentViz, select), (childViz, load(FK))) 

Operation:  Selecting an item in the parent visualization loads related items into 

the child visualization.  For example, in the file-folder example, selecting a 

folder in the plot loads and displays the files related to that folder in the tabular 

visualization. 
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3.2.4.3 Many-to-One-to-Many: Foreign-Key to Foreign-Key 

This is an implicit relationship that occurs when two relations share a common 

foreign-key attribute.  That is, a shared parent relation has a one-to-many join with both 

relations. 

In this case, a foreign-key action can be coupled to a foreign-key action.  A 

load(FK) to load(FK) coordination is often used when it is desired for two 

visualizations to display different descendants of the same parent.  For example, the 

U.S. states have counties and voting districts.  Two visualizations could be coordinated 

to always display the counties and districts (respectively) of the same state. 

 

Visualization

(Relation)

Select (PK)

Scroll (PK)
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…

Visualization
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…

 

Figure 3.8:   Many-to-one-to-many coordination 

 

There is one restriction on foreign-key actions.  While a visualization may have 

several different load actions available (primary key and for each foreign key), only one 

of these load actions can be tightly coupled at a time.  Thus, all other visualizations that 

coordinate to a visualization’s load action must use the same key attribute. 

3.2.5 Schema Management 

In the Snap model, if additional visualizations or coordinations are desired beyond 

what is available in the data schema, then additions can be made to the schema.  That is, 

if the schema graph does not translate to the desired coordinated-visualization behavior, 
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than simply modify the schema.  Hence, with Snap, advanced coordination is simply a 

schema manipulation problem rather than a custom user-interface programming 

problem. 

Schema management is used in two situations:  creating queries to generate desired 

visualizations, and establishing relationships to generate desired coordinations. 

First, when the data tables in the schema do not provide the appropriate relation 

needed for a visualization, then a query (view) can be created to generate the desired 

relation.  There are three common situations in which queries are used to generate 

desired visualizations.  Each is based on a single source table.  The query can be added 

to the schema, with a join relationship to its source table.  The query must also inherit a 

primary-key attribute from its source table. 

• Projection:  This is often used when only a subset of the attributes of a relation 

are needed for a visualization.  The query is one-to-one with the original 

relation. 

• Selection:  This is used to display a subset of the tuples of a relation.  It is one-

to-one with the original relation. 

• Aggregation:  This aggregates tuples in a relation, and is often used to create 

drill-down coordinations.  It is one-to-many to the original relation.  The 

GROUP-BY attribute is used as its primary-key attribute. 

Second, if the schema has no direct primary-key or foreign-key relationship between 

two relations, then a coordination cannot be established between their visualizations.  

However, if there is an indirect path through other relations, then it is generally possible 
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to modify the schema to generate the appropriate behavior.  For example, a query could 

be created that joins the relations along the path. 

3.3 Graph Model of Composite Coordinations 

The previous section examined coordinating two visualizations together.  Now, this 

is expanded to composing many visualizations with many coordinations.  Coordinated-

visualization interfaces can be defined using a graph model.  Expanding on the above 

definitions for a visualization and a coordination, a coordinated-visualization interface 

(CVI) is defined as a set of visualizations (V) and a set of coordinations (C) between 

them: 

CVI = (V, C),  where 

V = {v1, … , vn},   vi = (visualizationType, relation) 

C = {c1, … , cm},   ci = ((vj, actionj), (vk, actionk)), where vj,vk ∈  V. 

This is a graph in which nodes are visualizations and edges are coordinations.  

Edges are labeled at both ends with the actions that are tightly coupled in the 

coordination.  In the Snap model, since visualizations correspond to relations and 

coordinations correspond to joins, the coordination graph corresponds directly to the 

data schema graph.  For example, Figure 3.9 shows the coordination graph for the file-

folders interface for system administrators from Chapter 1. 

This model indicates several properties that further describe how coordinated-

visualization interfaces operate as follows. 
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Figure 3.9:   Coordination Graph 

3.3.1 Commutative 

((vj, actionj), (vk, actionk)) ⇔  ((vk, actionk), (vj, actionj)) 

Snap coordinations are bi-directional, so that either action triggers the other.  For 

example, selecting a folder in the Hyperbolic Tree highlights it in the scatter plot, and 

by commutativity, selecting in the plot highlights in the Hyperbolic Tree.  Note, 

however, that each action is strictly tied to its visualization.  Hence: 

actionj ≠ actionk  ⇒   ((vj, actionj), (vk, actionk)) ≠ ((vk, actionj), (vj, actionk)) 

3.3.2 Transitive 

((vi, actioni), (vj, actionj)) ∧  ((vj, actionj), (vk, actionk))  

 ⇒  ((vi, actioni), (vk, actionk)) 

Coordinations can be chained end-to-end.  Invoking an action at one end will 

propagate down the chain, triggering actions at each visualization.  All visualizations 

related by transitivity to the visualization where the action is invoked will have their 

coordinated actions invoked.  For example, brushing-and-linking can be established 

across three visualizations.  In the file-folder example, selecting a folder in the 



 

 42 

Hyperbolic Tree also selects it in the plot, which in turn loads files into the tabular 

visualization. 

Invoking an action on any visualization in the coordination graph essentially 

initiates a graph traversal.  Coordinations only propagate at each visualization if the 

incoming action from one coordination matches the out-going action of the next.  For 

example, selecting a folder in the plot loads files into the tabular visualization, but does 

not cause any action on the file viewer.  Formally: 

((vi, actioni), (vj, actionj)) ∧  ((vj, actionx), (vk, actionk))  

 ⇒  ((vi, actioni), (vk, actionk)) 

Hence, a connected component can be defined as a subset of a CVI containing all 

visualizations and coordinations related by transitivity to a single visualization action 

invocation.  Connected components are essentially spheres of interaction in the 

coordinated-visualization interface.  The file-folder example has two connected 

components:  selecting folders, and selecting files (Figure 3.10). 

 

Hyperbolic 
Tree 
(Folders) 

Select 

Load (PK) 

Load (FK) 

Scatter plot 
(Folders) 

Tabular Viz 
(Files) 

File Viewer 
(Files) 

Select 

Select 

Select 

 

Figure 3.10: Connected components 
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Using the expanded notation for coordination (viz, action, PKvalue) with transitivity 

shows that only the primary-key value of the action initiated by the user is propagated 

during the traversal of a connected component. 

The transitive property enables the deduction of coordinations.  For example, given 

three visualizations and two transitive coordinations connecting them, the third 

coordination can always be deduced.  Figure 3.11 shows the 4 possible transitive 

combinations of the three relationship types (PK-PK, PK-FK, FK-FK).  For example, in 

the top right diagram describes the file-folder example as C=Hyberbolic, B=plot, 

A=tabular.  The coordination C-A can be derived as select to load. 
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Figure 3.11: Deriving coordinations with transitivity 
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3.3.3 Conflict Free 

An important property of the Snap model is that its coordinations are conflict free.  

In designing systems that use coordination, there is often a concern about possible 

conflicts due to cycles in the coordination graph.  For example, in an exotic scenario, 

selecting a U.S. state on a map might coordinate to highlight the state’s governor in a 

list of the 50 governors, which might then coordinate to highlight the governor’s birth 

state on the map.  This creates a cycle and would then attempt to highlight the governor 

of that state, etc.  A conflict occurs when the same action is invoked on the same 

visualization twice (or more) with different primary-key values in a single coordination 

execution cycle.  Conflicts can result in endless looping or mismatched state between 

visualizations. 

However, cycles in Snap are always redundant and never conflicting.  That is, when 

a coordination propagation visits a visualization a second time due to a cycle, the 

primary-key value given is always the same value for both visits, resulting in a 

redundant action and not a conflict.  This is because only a single primary-key value is 

propagated during a single coordination traversal.  This is easily proven using the 

transitive property.  When deriving a self-coordination using transitivity around a cycle, 

the result clearly shows the equality of the PKvalue: 

((vj, actionj, PKvalue), (vj, actionj, PKvalue)) 

Hence, the Snap model would not allow the above exotic example to be constructed.  

The offending component is the ‘birth state’ coordination.  This is a one-to-many 

relationship from states to governors, and hence cannot support a select (PK) to select 
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(PK) coupling.  A potential solution is to employ a third visualization to display the 

birth state.  From a user’s point of view, this would make more sense anyway. 

A mark-on-visit traversal algorithm can be used to detect and stop cycles (self-

coordinations).  Each action of a visualization is marked independently.  Thus, a 

visualization can be visited twice, but only for different actions. 

3.3.4 Subgraphs 

Subgraphs can be easily added to or extracted from a coordinated-visualization 

interface.  These subgraphs are themselves CVI’s.  Hence, this enables the saving and 

reusing of CVI’s.  A saved coordinated-visualization interface can be immediately 

instantiated and coordinated to other visualizations.  Essentially, this enables the 

construction of composites as new primitives.  This powerful notion resembles how 

programs or macros are saved for later use in more complex programs. 

3.4 Applications and Limitations 

The Snap model captures a variety of types of data, visualizations, and 

coordinations that are commonly used in information visualization.  Appendix A 

describes Snap’s use in a diverse set of examples, including census statistics, GIS maps, 

case-law textual information, photo libraries, hierarchical file structures, web sites, and 

address databases.  The model exploits existing functionality of visualizations and 

exploits data relationships to enable coordinations for navigating and exploring 

information. 

The Snap model focuses on interaction with individual data objects (i.e. relational 

tuples).  Hence, this model is not well suited for attribute-based spatial coordinations, 

such as large 2D or 3D image browsing applications and scientific visualization.  
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Navigation in these applications is often based on pixels or voxels, as in the Visible 

Human Explorer [NSP96] for example.  While it would be possible to model images in 

a relational data model (e.g. pixel = tuple), it simply is not very practical.   

However, such spaces often have meaningful objects embedded, in which case the 

Snap model is very appropriate.  For example, the Visible Human 3D image data 

contains segmented anatomical structures with links to databases of anatomical 

information such medical terminology dictionaries.  Figure 3.12 shows a mockup from 

early work on Snap which uses brushing and linking between anatomical objects in the 

image data (like an image map) and terms in the Medical Subject Headings hierarchical 

dictionary [Nor98].  In fact, based on extensive work on 3D image browsing with 

medical domain experts [CSP97], Konstan discovered that the experts desired these 

types of cross-media database coordinations more than the spatial navigation 

coordinations [Kon97]. 

 

 

Figure 3.12: Relationships between image and textual data 
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The embedding of meaningful objects is also found in other domains as well.  For 

example in continued work on Pad++ [BH94], a zoomable user interface in which 2D 

spatial navigation is primary, Bederson has increasingly employed an object-based 

approach where users click hyperlinks to navigate between objects rather than manual 

spatial navigation. 

Dynamic Queries [AS94] and coordinating plot axes (as in DEVise [LRB97]) are 

also attribute based.  Although these could be handled in Snap by enumerating matched 

objects, this is not very efficient.  Dynamic Queries requires specialized data structures 

and algorithms in each visualization, so is inherently in conflict with the goal of using 

independent visualizations anyway.  It would be interesting to explore how the 

attribute-based approach could be combined with the Snap model. 

3.5 Extensions to the Model 

Snap’s conceptual model is intentionally designed with simplicity to simultaneously 

capture the need for a model of visualization coordination as well as meet the practical 

architectural goals (as discussed in Chapter 5).  However, this model may be extended 

in several ways: 

3.5.1 Multiple-Tuple Actions 

Some actions in some visualizations may be able to act on multiple tuples.  Instead 

of acting on a single primary-key value, these actions could act on a set of values.  For 

example, multiple selection [Wil96] is often used for brushing-and-linking 

coordinations to enable users to highlight several tuples simultaneously.  Clearly, this 

does not apply to all actions.  Some actions, such as scroll, are semantically single-

tuple.  Others are limited by the visualization’s software architecture, e.g. Treemaps can 
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only select one node.  However, visualizations could mark their actions as single- or 

multiple-tuple capable.  Then, Snap could allow actions of the same cardinality to be 

tightly coupled in coordinations.   

In fact, in continued work on Snap at the Census Bureau, multiple selection has 

been added.  For example, in Figure 3.13, selecting the high income and highly 

educated U.S. states in the scatter plot (using Spotfire’s lasso selection capability) 

reveals that those states are all in the northeast, the DC to Boston corridor. 

 

 

Figure 3.13: Brushing and linking with multiple-tuple selection 

 

3.5.2 Unions and Intersections 

The drill-down coordination enables users to select a parent tuple in one 

visualization to load and display its children tuples in another (1-M).  This could be 

extended for union and intersection by using multiple selection and allowing 

simultaneous use of different foreign-key load actions as follows: 
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• Union:  Selecting multiple parent tuples in the same parent visualization would 

display the union of their children.  For example, selecting two folders would 

display the files of both in the tabular visualization.   

• Intersection:  Selecting multiple parent tuples from different parent 

visualizations would display the intersection of their children.  For example, 

selecting a folder and a user would display only the files in that folder owned by 

that user.  This would allow the construction of simultaneous-menu applications 

[HKV00].  This requires allowing load actions on different foreign keys 

simultaneously. 

This approach would enable users to select from several different overviews to filter 

items in a main visualization, enabling functionality very similar to Dynamic Queries. 

3.5.3 Other Foreign-Key Actions 

It would also be possible to enable multiple-tuple actions to act as foreign-key 

actions.  For example, selecting a parent tuple in one visualization might coordinate 

across a 1-M join to select and highlight all its children tuples in another visualization.  

This could be used for brushing-and-linking across many-to-many relationships.   

However, this will likely introduce confusion for users.  Primary-key actions and 

foreign-key actions are semantically different, but users would not be able to distinguish 

primary-key selections from foreign-key selections in the visualization.  For example, 

what should happen if users select a child tuple in the latter visualization?  Also, should 

the foreign-key selection of children tuples initiate new primary-key selection actions 

for each?  This modification would introduce the potential for conflicts in coordination. 
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3.6 Summary 

The Snap model provides a solid, well-founded basis for visualization coordination.  

It is based on the relational data model.  Visualizations display relations, and 

coordinations correspond to one-to-one and one-to-many join relationships.  A graph 

model describes the coordination of multiple visualizations.  The Snap model is the 

underlying basis for the Snap user interface and software architecture. 
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Chapter 4:  
User Interface for Coordination 
Construction and Operation 

 

 

4.1 Background 

The Snap-Together Visualization user interface enables data users to quickly and 

dynamically construct coordinated-visualization interfaces without programming.  

Then, they can efficiently explore their data using these powerful coordinated-

visualization interfaces that are custom tailored to their data, tasks, and preferences. 

Snap is used in two modes.  Users first construct interfaces, then operate them to 

explore.  However, there is not a distinct mode switch between modes.  Users can 

interchange activities on the fly as needed. 

Chapter 1 provided an overview scenario of the Snap user interface.  This chapter 

proceeds to describe the interface in detail. 

4.1.1 Users 

As indicated by the study in Chapter 6, the users that construct interfaces with Snap 

are likely to be the more data-savvy users or data owners, such as analysts or data 

providers.  These highly motivated users are familiar with the general content and 

structure of the data (e.g. the data schema), and have accumulated some experience in 

constructing with Snap.   

Some of these users construct interfaces for their own use.  For example, an analyst 

at the Census Bureau might quickly snap together an interface while examining trends 
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in newly collected survey results.  The analyst could also present findings to co-workers 

using the same interface. 

Users can also construct interfaces for use by others.  For example, a data-product 

specialist at the Census Bureau could construct an interface to accompany the 

distribution or publication of census-2000 population statistics.  Then, casual readers 

such as policy makers or business owners could easily examine the data, using the pre-

constructed interface, and make decisions. 

As an in-between case, an analyst might construct interfaces for use by other 

analysts in the organization, similar to the way they share Excel macros [NM91]. 

Several enhancements to the Snap interface are described later in this chapter that 

are aimed at enabling even casual end users to construct coordinated-visualization 

interfaces themselves.  This is accomplished by using direct manipulation techniques to 

reduce users’ learning time, performance time, and error rates. 

4.1.2 Requirements 

The Snap user interface is soundly based on the underlying Snap model for 

visualization coordination.  For construction, the model completely specifies what 

choices users make to specify a new coordinated-visualization interface (CVI).  

Recalling the definition: 

CVI = (V, C),  where 

V = {v1, … , vn},   vi = (visualizationType, relation) 

C = {c1, … , cm},   ci = ((vj, actionj), (vk, actionk)), where vj,vk ∈  V. 

Hence, to construct a coordinated-visualization interface, users must: 

1. create visualizations by matching relations to visualization types, and 



 

 53 

2. coordinate visualizations by selecting pairs of visualizations and specifying 

actions to tightly couple in each. 

In addition, the possible choices of actions to tightly couple are specified by the data 

schema, the one-to-one and one-to-many relationships.  These definitions provide users 

with syntactic guidance only.  Semantic guidance comes from the semantics of the data 

schema and the desired tasks to support. 

4.2 Coordination Construction 

Snap’s user interface employs a two-step approach to construction.  Users first open 

and display relations in visualizations.  Then, they coordinate the visualizations by 

tightly coupling actions between the visualizations. 

Implementation note:  Snap supports database formats that have ODBC drivers, 

such as Microsoft Access or Oracle (see Implementation section of Chapter 5).  To edit 

the database and schema, the database’s native software is used.  For example, Access 

databases are manipulated using Access’s GUI.  For databases that do not have the 

necessary software, Snap provides a simple SQL text editor to add and edit queries.  

The description in the remainder of this chapter assumes an Access database. 

4.2.1 Relations into Visualizations 

Starting Snap displays the Snap Menu window.  To begin construction and 

exploring a database, users first open the database using Snap.  Any database (of the 

supported formats) can be opened with Snap.  That is, Snap is not hard wired to a 

specific database or schema.  Snap determines the schema from the database. 

The Snap Menu (Figure 4.1) displays a list of the tables and queries in the database 

(left).  It also displays a menu of the available visualization types (right).  To display a 
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relation in a visualization, users simply drag the desired table or query name onto a 

visualization-type button (or select a relation and click a visualization button).  The 

visualization tool opens and the relation is loaded and displayed.  Users can open as 

many as needed. 

 

Figure 4.1:   Snap Menu 

 

4.2.1.1 Visualization Types 

The current implementation has the following visualization types:   

• Scrolling list:  Displays each tuple like a textual report with each attribute on a 

new line (Figure 4.2).  Particularly useful for long text (e.g. memo fields).  

Multiple tuples are separated by a horizontal rule.  Actions: select a tuple, and 

scroll to a tuple. 

• Paging list:  Like scrolling list, but displays only one tuple at a time.  A paging 

bar enables navigation to the other tuples.  Actions: select a tuple, and page to a 

tuple. 
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• Table:  Standard rows (tuples) and columns (attributes) display.  Actions: select 

a tuple, scroll a tuple to the top. 

• Spotfire:  Commercial dynamic-query software, including scatter plot, bar 

chart, pie chart.  Actions: select a tuple by click or mouse-over. 

• Outliner:  Standard nested-indented hierarchy widget.  Actions: select a tuple. 

• Treemap:  Research software that displays hierarchies by area-coded slice-and-

dice containment.  Actions: select a tuple (node) by click or mouse-over, zoom 

onto a tuple. 

• Hyperbolic Tree:  Commercial Java applet (Inxight Software) that displays 

hierarchies as a radial fish-eye.  Actions: select and center focus on a tuple. 

• Internet Explorer (IE):  Accepts a relation with a single tuple and a single 

attribute which contains the URL or pathname of the web page, folder, or file 

(file viewer) to display.  Actions: none, output only. 

• Image Thumbnails:  Displays a set of thumbnail images in a flexible manner, 

using pathnames attribute.  Actions:  select a tuple (image), zoom a tuple. 

• Image Maps:  Uses IE to display an image map.  Actions: select a tuple (region 

of the image map). 

• ArcView Maps:  Commercial GIS software that displays choropleth (colored by 

attribute) geographic maps.  Actions: select a tuple (geographic entity), zoom on 

a tuple. 
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Tuple1:
Attribute1: _____________
Attribute2: _____________
…
AttributeN: ____________

Tuple2:
Attribute1: _____________
…

 

Figure 4.2:   Scrolling list visualization 

 

The hierarchical visualizations require a pathname attribute that specifies the 

hierarchical structure of the tuples.  There are two variations: 

• Complete hierarchies have a tuple for each node in the hierarchy.  For example, 

in the file-folder example, each folder in the hierarchy is represented by a tuple. 

• Leaf-only hierarchies have tuples for only the leaf nodes.  For example, a 

relation of U.S. states might organize the states into six major regions.  Hence, 

the region level of the hierarchy does not have tuples, only the states at the leaf 

level do. 

4.2.2 Coordinating Visualizations 

When opening a visualization tool, Snap automatically adds a “snap” button 

 to its window in the upper right corner.  This is intended to be similar to the 

way the window manager adds minimize, maximize and close buttons to each window. 

To establish a coordination between two visualizations (“snap them together”), 

users first identify the pair by dragging the snap button from one of the visualizations to 

the snap button of the other visualization (as shown in the Chapter 1 scenario).  This 

drag-and-drop approach for selecting pairs of visualizations is similar to that of 
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LinkWinds [JBO94] and Apple Dylan [DP95], although the latter distinguishes between 

output and input buttons. 

Then, the Snap Specification dialog is displayed (Figure 4.3).  The Snap 

Specification has two group boxes.  The top box displays information about the first 

visualization (at the source of the drag-and-drop), and the bottom box displays 

information about the second visualization (the destination of the drop).  The order of 

the visualizations is not important, since coordinations are bi-directional. 

 

 

Figure 4.3:   Snap Specification dialog 

 

The information displayed about each visualization includes:  the title of the 

visualization, the name of the table or query in the visualization, the set of actions 

available for tight-coupling, and the primary-key and foreign-key attribute names.  

There are three action slots for each visualization.  The actions shown in these slots are 
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completely determined by the visualization.  If the visualization offers fewer than three 

actions, then the remaining slots are grayed out. 

Users can then select which of the actions to tightly couple.  For example, choosing 

the select actions of both visualizations will create a brushing-and-linking style 

coordination.   

The current implementation does not have access to information about the relational 

joins in the data schema.  Hence, users must enforce the primary-key action and 

foreign-key action combination rules themselves.  The display of the key attribute 

names helps users remember the join relationships.  The system does attempt to guess 

the join by matching the key names, but is fallible of course. 

To use the load action, users first create a parameterized selection query that 

extracts tuples by matching the appropriate primary-key or foreign-key attribute to the 

given key value.  Then, they open this query in a visualization.  The presence of the 

parameterized query enables the visualization’s load action.  They can then tightly 

couple the load action in a coordination.  The parameterized query enforces the rule that 

only one foreign-key or primary-key attribute can be used in a visualization’s load 

action at a time. 

For example, in the file-folders example in Chapter 1, the select action of the scatter 

plot is coordinated to the load action of the tabular visualization.  The tabular 

visualization displays the results of a query like: 

SELECT * FROM files WHERE files.parentFolderID = <parameter> 
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4.2.2.1 Modifying Coordinations 

Users can edit coordinations by clicking on a visualization’s snap button.  The Snap 

Specification dialog displays coordinations to that visualization.  If there are multiple 

coordinations, the combo box at the top of the dialog is used to flip through them.  

Users can then change the choice of tightly coupled actions or delete a coordination 

entirely. 

4.2.2.2 Coordination Suggestion 

When the system can determine the join relationship between the visualizations, it 

automatically suggests the following common coordinations in the Snap Specification 

dialog: 

• Primary key to primary key:  suggests select to select, for brushing-and-linking. 

• Primary key to foreign key:  suggests select to load, for drill-down. 

• Foreign key to foreign key:  suggests load to load. 

Users can immediately accept the suggestion, or override with their own choices. 

4.3 Coordination Operation 

Once the coordination has been established, users can then operate the now 

coordinated visualizations.  These coordinated-visualization interfaces significantly 

improve users’ performance in many tasks as shown in the user studies in Chapter 6.  

Users are better able to explore, understand, and discover new information.   

In addition to guiding the construction of coordinations, Snap’s model also specifies 

how the coordinations operate once constructed.  The commutative and transitive 

properties of the graph model lead to bi-directionality and propagation in the user 

interface. 
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4.3.1 Bi-Directionality 

When users perform either of the actions tightly coupled in a coordination, the other 

is also executed.  For example, Figure 4.4 shows an interface constructed with Snap for 

browsing information on the U.S. states using an overview-and-detail coordination.  

Selecting a state in the overview immediately scrolls the detail to the information about 

that state.  Likewise, scrolling through the detail highlights the name of the currently 

viewed state in the overview.   

 

 

Figure 4.4:   Overview and detail 
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Bi-directionality is an important design property of coordination that is often 

violated in the design of user interfaces for other systems.  Interface designers often 

neglect to include the latter direction of the overview-and-detail coordination.  For 

example, many web pages with frames enable users to select an item in an overview 

frame to navigate the main frame (see web frames example in Chapter 1).  However, 

when manually navigating the main frame, the highlight does not update in the 

overview.  As a result, the interface can depict an inconsistent state, leading to user 

disorientation and confusion. 

An advantage of Snap is that user interfaces constructed with it automatically inherit 

the robust nature of the Snap model, preventing such poor designs. 

4.3.2 Propagation 

When users invoke an action in a visualization, the effects will propagate across 

chained coordinations.  All visualizations coordinated to that visualization either 

directly or indirectly through other visualizations will have their tightly-coupled actions 

executed.   In the file-folders example, selecting a folder in the Hyperbolic Tree will 

highlight that folder in the scatter plot and load its files into the tabular visualization. 

4.4 Additional Features 

The Snap model and architecture also enable a variety of other user interface 

capabilities that magnify the utility of its coordinated-visualization interfaces.  The 

following features have already been built: 

4.4.1 Save Groups 

A coordinated-visualization interface can be saved for later reuse, sharing, or 

distribution with data.  The Save Group button on the Snap Menu displays the Save 
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Group dialog (Figure 4.5).  Users select the visualizations they want to save by clicking 

the snap buttons on the visualizations, then assign the group a name, such as “Windows 

Explorer for System Administrators”.   

Then, selecting that name from the combo-box on the Snap Menu automatically 

reconstructs the coordinated group of visualizations. 

 

  

Figure 4.5:   Save Group dialog, and Snap Menu opening a group 

 

4.4.2 Extract 

Users explore information so that they can extract the needed information required 

to accomplish some other task, such as writing a report on Maryland’s economic status.  

Snap allows users to drag-and-drop tuples from visualizations into other applications 

such as Microsoft Word or an email message window.  For example, users could select 

Montgomery County on a scatterplot of census data, and drag it to a Word document.  

When tuples are dropped, Snap displays a small popup list of the attribute names for the 

tuples (Figure 4.6).  Users select the desired attributes, such as county name, per capita 
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income, and population.  Then Snap inserts the tuples values for those attributes into the 

document text.   

Hence, snap can enable drag-and-drop for visualizations that do not support that 

capability because Snap tracks the selection actions and provides a drag initiation point 

in the visualization’s snap button.  Clearly, this capability would be significantly more 

powerful if multiple selection were enabled.  Users could select the 10 most populated 

counties and extract their data to a document with a single drag-and-drop. 

 

 

Figure 4.6:   Attribute selector for drag-and-drop data extraction  

 

4.4.3 Search Box 

Snap provides a search box that can be coordinated to other visualizations.  The 

search box enables users to directly type in a primary-key value, and initiate a 

coordination using that value.  For example, if the folders primary-key values were their 

pathnames, users could coordinate the search box’s search action to the select action of 

the folders scatter plot.  Then typing a folders pathname into the search box will 

highlight the folder in the plot. 
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In a more advanced scenario, the search box can be used with computed joins.  For 

example, a query could return all the files that have a provided key word in their name 

(or perhaps in their contents).  The key word can be thought of as a foreign key, joined 

to a relation of keywords.  The query can be opened in a list visualization and 

coordinated to the search box.  The search box provides the key word, and the list 

displays the resulting file ‘hits’.  This approach is used in the WestLaw scenario for 

searching case-law documents (Figure 4.7).  Typing a search term reveals case-law 

documents containing that term in a textual list of hits as well as a scatter plot.  Notice 

that the query also returns a relevance value for use on the Y-axis of the plot.  This 

interface could be coordinated to a case-viewer interface for examining hits. 

 

 

Figure 4.7:   Searching case-law documents 

4.4.4 History 

History keeping is becoming an important new research topic for user interfaces.  

History allows users to quickly review previous states when exploring.  Since Snap 

receives action events from visualizations, Snap can easily keep a history list of all the 
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actions users invoke.  Snap’s History window displays that list in chronological order 

(Figure 4.8).  Each event indicates the visualization, action, and tuple.  Selecting an 

event from the list re-invokes that action on that tuple in that visualization. 

 

 

Figure 4.8:   Snap’s History window 

 

4.4.5 Shopping Basket 

While exploring, users can easily gather a set of interesting tuples in Snap’s 

Shopping Basket window, similar to the History window.  Selecting a tuple in the 

basket also selects it in the visualization it originally came from.  This allows users to 

collect a temporary set of items of interest while exploring.  These can be used as 

bookmarks to return to those items in the visualizations. 

4.5 Enhancements 

The results of the user studies (Chapter 6) demonstrate that users, with some 

training, are able to construct coordinated-visualization interfaces with Snap.  The 

studies also helped to identify improvements to the user interface that could 

dramatically reduce the need for training, improve user performance, and decrease error 
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rates.  These enhancements focus on reducing the need for query editing, and providing 

diagrammatic user interfaces that closely match the Snap model. 

4.5.1 Automatic Query Generation 

The study on construction revealed that creating new queries using Access was the 

primary difficulty for users.  Reducing the need to create queries in this manner would 

be a major benefit.  While the capability for creating queries enables generality, 

shortcuts are possible for the common simple situations.  An applicable HCI design 

principle is: make common tasks easy, possibly at the expense of making rare tasks 

more difficult.  There are two types of common simple queries that users must often 

create:  selection, projection. 

4.5.1.1 Selection 

When using the load action in a coordination, Snap can automatically create the 

appropriate selection query based on the join relationship.  In the file-folders example, 

when coordinated folders to files with select to load, Snap could automatically infer the 

SQL query for files based on the data schema: 

SELECT * FROM files WHERE files.parentFolderID = <parameter> 

4.5.1.2 Projection 

Projection queries are often needed to extract certain attributes from a relation for 

display in a visualization.  For example, an overview list of states’ names is generated 

using a projection query to extract the Name field from the states relation: 

SELECT id, name FROM states 

In a modified Snap Menu, the tables and queries list is changed to an outliner 

control (Figure 4.9).  Users can expand a table or query to reveal its attributes.  Then, 
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users can directly select attributes of a relation and drag them to visualizations, in 

addition to the capability to select an entire relation.  Snap can automatically generate 

the projection query for the chosen attributes, and automatically include the primary-

key attribute. 

 

 

Figure 4.9:   Including attributes in the Snap Menu list of tables 

 

4.5.2 Data Compass 

The two-phase approach to coordination construction (opening visualizations, then 

specifying coordinations) can be combined into one.  Once the user has initially opened 

a relation in a visualization, the Data Compass user interface displays which relations 

the user could coordinate to the current visualization based on the data schema.  Users 

can select one of the relations, a visualization to display it in, and the actions to tightly 

couple.  The new visualization is immediately displayed and coordinated to the current 

one as specified.  For example, after displaying a visualization of the folders relation, 
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the Data Compass indicates that users could coordinate a visualization of files, another 

visualization of folders, or other relations such as HardDrives or Users who own the 

folders (Figure 4.10). 

This approach helps guide users in the construction process, and hence may 

significantly reduce training time.  It may also match users’ mental model more closely: 

“Where can I navigate to from here?”.  This may be valuable when exploring databases 

with many relations and very complex schemas (as in SeeData [AEP96]). 

The Data Compass user interface divides relations that can be chosen into three 

groups based on the join relationship with the current relation: 

• Parents:  One to many towards the current relation. 

• Siblings:  One to one. 

• Children:  One to many towards the other relation. 

 

Up Level       Users,
(parents)   HardDrives

 1
 M

Same Level         1   1    Folders
(siblings)

 1
Down Level  M
(children)         Files

Folders

 

Figure 4.10: Data Compass 
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4.5.3 Overview Diagram 

When users coordinate three or more visualizations, an overview diagram (Figure 

4.11) is needed to help users understand and manage the coordination graph (that is, a 

visualization of visualization-coordination, or a meta-visualization).  This helps to make 

the underlying Snap model more salient to users.  The overview displays visualizations 

as nodes and coordinations as edges.  Using direct manipulation, users can construct, 

edit, and delete coordinations.  A debug mode can allow users to slowly step through a 

coordination propagation cycle.  This diagram might also integrate the data schema to 

show the correspondence between relational concepts and Snap user-interface concepts, 

and to localize all interaction related to construction to a single window. 

In LinkWinds [JBO94], users can temporarily view the linkages between its 

windows.  When clicking the LinkWinds icon, it draws lines between the windows on 

the desktop. 

 

Hyperbolic
Tree
(Folders)

Select

Load (PK)

Load (FK)

Scatter plot
(Folders)

Tabular Viz
(Files)

File Viewer
(Files)

Select

Select

Select

 

Figure 4.11: Overview diagram 
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4.5.4 Window Management 

The studies also indicated that window management is a major burden for users.  

Two forms of automatic window management [KS97] can help: 

• Tiling:  When displaying many visualizations, users need to tile many windows 

on the screen.  With tiling, users can easily “dock” visualizations to each other, 

so that resizing and rearranging is quick. 

• Packaging:  Users can package several visualizations into a single window 

using frames.  This allows the group to be manipulated as a whole, for opening, 

coordinating, moving, resizing, and deleting.  For example, in the WestLaw 

scenario, the case viewer is a saved group composed of three visualizations.  

This group is a semantic unit that can be instantiated and coordinated to other 

visualizations to load and display cases.  The three visualizations could be 

packaged to reflect this grouping.  This allows saved groups to be treated as a 

single visualization, turning composites into new primitives. 

4.6 Summary 

The Snap user interface enables users to explore information by quickly 

constructing coordinated-visualization interfaces without programming.  Users first 

open relations into visualizations, then coordinate them by selecting actions to tightly 

couple.  Snap also enables a host of additional features that further amplify its value.  

Several enhancements to the Snap user interface have also been described based on 

results from user studies in Chapter 6. 
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Chapter 5:  
Software Architecture for Visualization 
Coordination 

 

 

The Snap-Together Visualization software architecture enables the dynamic 

construction of coordinated visualizations, providing flexibility in data, visualizations, 

and coordinations.  A major goal of Snap is to coordinate independent visualization 

tools.  The Snap architecture implements the Snap model and exploits existing 

functionality of visualizations to accomplish this goal.  Because of Snap’s clean design, 

researchers and developers can easily snap-enable their independent visualization tools, 

allowing users to employ the tools in coordinated-visualization interfaces of their own. 

5.1 Architecture Overview 

The Snap system acts as a centralized intermediary between visualizations (Figure 

5.1).  It also mediates between the database and the visualizations.  The Snap 

architecture insulates visualizations from each other, the database, and the rest of the 

system.  This protects visualizations from having to be programmed to handle the 

complexities of visualization coordination.  In fact, visualizations are completely 

unaware of the concept of coordination.  Their only connection to Snap is through a 

very simple API (application programming interface). 

This is different from standard approaches in fully integrated systems.  For example, 

in the Visage [RLS96] architecture, when users highlight an item in one visualization it 

broadcasts a message to all other visualizations.  Then each visualization must itself 
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determine the relationship of that item to its set of items and calculate what action to 

take. 

 

Snap-Together Visualization

Database

Visualization1

ActionsData

Visualizationn

ActionsData

Visualization Managers

…
 

Figure 5.1:   Snap’s software architecture 

 

5.2 Visualizations 

At start up, Snap’s Main Menu displays a menu of available visualization tools.  

Each visualization must initially register with Snap in order to be included in this menu.   

When initially opening a database, Snap extracts schema information from the 

database, including the list of relations (tables and queries) to display in the Main Menu.   

When users open a relation into a visualization, the following operations execute: 

1. Within Snap, a Visualization-Manager object is instantiated to handle 

communication with the visualization. 

2. The visualization tool is instantiated. 
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3. If the relation is a query, the query is executed in the database. 

4. The data in the relation is loaded into the visualization, using the visualization’s 

Load Procedure (described in the API section below). 

5.2.1 Goals for Snap-Enabling Visualizations 

Snap is designed to be open, so that developers can easily make their independent 

visualization tools snap-able, including existing visualizations and newly developed 

visualizations.  The effort required to snap-enable an off-the-shelf visualization is 

minimized to the extent that even a developer who is not the original implementer of the 

tool should be able to make the necessary modifications.  

To accomplish this, snap minimizes the impact on visualization implementation.  

Snap uses a simple API (application programming interface) to communicate with 

visualizations.  This is analogous to API’s in modern window-management systems for 

utilities such as cut-and-paste or drag-and-drop.  The Snap API is proposed as a similar 

standard, that can be easily added to a visualization tool by its developers, enabling 

users to immediately snap it with many other visualizations.  This greatly increases the 

value and usefulness of the tool for little cost.  Effort is low and payoff is high. 

Snap limits programming effort by exploiting existing functionality of visualizations 

to coordinate them together.  The functionality of typical visualization tools includes the 

ability to load a data set (e.g. from a file) and display it as visual items in a window.  

These tools often provide some form of interactivity, allowing users to select items or 

navigate between items. 
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To maximize the compatibility of the architecture with typical visualization tools, 

and minimize the effort to integrate these tools, the architecture places upper limits on 

visualization requirements.  Primarily, these aspects of visualizations are NOT changed: 

• Remain independent software entities.  Run as stand-alone applications as 

normal, and are not compiled into Snap. 

• Themselves determine what actions they support (e.g. select, scroll).   

• Use their existing data input format. 

• Do not need to deal with the larger data context of the database.  Handle the data 

loaded into them by Snap as normal. 

• No new user interface requirements. 

• No requirements for shared data structures, etc. 

• Do not need to be made aware of the database, other visualizations, or 

coordination. 

Furthermore, Additions to the visualizations are limited to: 

• Simple communication protocol. 

• Identify tuples by primary-key only (e.g. no complex attribute processing). 

5.2.2 Snap Button 

When instantiating a visualization, the Visualization Manager automatically adds 

the snap button  to the visualization’s user interface.  This is similar to the 

concept of window managers adding window decoration and controls to each window 

when opened.  This provides an interaction point for the user for each visualization, and 

is used for coordination construction, loading different data, saving groups, etc. 
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Ideally the snap button would appear next to the minimize, maximize, and close 

buttons on the window’s title bar.  However, due to minor implementation constraints, 

the snap button is placed just below these buttons within the window’s client area.  This 

is accomplished by simply inserting a small child window containing only the snap 

button into the visualization window.  Hence, the snap button moves and overlaps with 

the visualization’s window.  The Visualization Manager tracks resize events of the 

visualization’s window, and adjusts the position of the snap button within the 

visualization accordingly. 

This approach saves developers from needing to add Snap user interface 

functionality to their visualizations. 

5.2.3 Visualization API 

To be snap-enabled, each visualization must implement the following API.  Snap 

communicates with the visualization by connecting to these entry points on the 

visualization.  It is worth noting that this API is not necessarily specific to visualization 

coordination.  It is quite general, and could be useful for many other applications such 

as history keeping, end-user programming, multi-user collaboration, etc. 

There are only three elements in the API: 

5.2.3.1 Load Procedure 

Procedure doLoad(filename | dataObjRef | SQLstring, PKattribute) 

Snap can invoke this routine to load data into the visualization.  Visualizations can 

choose one of three methods to receive the data: 
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• File:  Snap writes the tuples to a temporary file in the format expected by the 

visualization, using a translator routine.  This is the approach for most typical 

research visualization tools, such as Treemaps and Hyperbolic Trees. 

• Memory:  Snap provides the data using standard ODBC data objects (Microsoft 

DAO or ADO).  This is common for visualizations that were developed 

specifically as components (e.g. ActiveX), such as the tabular visualization 

which uses a standard grid control, or developed specifically for Snap, such the 

textual list visualization. 

• SQL:  Snap provides the ODBC connect string and the SQL query string that 

the visualization then uses to extract the data from the database itself.  This is 

useful for visualization tools that have built in database support, such as 

Spotfire. 

Visualizations may also need to know which attribute to use as the primary key.  

Visualizations should attempt to preserve any visual settings across loads. 

5.2.3.2 Action Procedure 

Procedure doAction(action, PKvalue) 

Snap can invoke this procedure to programmatically execute the specified action on 

the tuple identified by the specified primary-key value.  For example, a coordination 

could invoke the select action on a Spotfire scatter plot to highlight the specified dot.  

Each visualization publishes the list of actions it supports to Snap at registration time. 

5.2.3.3 Action Event 

Event onAction(action, PKvalue) 
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The visualization triggers this event to Snap whenever users perform one of the 

visualization’s supported actions on a tuple.  The visualization reports the action name 

and the primary-key value of the tuple.  For example, when users click on a dot in a 

Spotfire scatter plot, Spotfire reports the select action. 

5.2.4 Visualization Registration 

At registration time, each visualization specifies its: 

• Name:  for identifying it to the user, as on the Snap Main Menu. 

• Description:  more detailed text. 

• Launch string:  specifies how Snap instantiates the visualization. 

• List of actions.  each action is a string, for identification to the user in the Snap 

Specification dialog and for use in the API. 

• Load method:  File, Memory, or SQL (see API Load Procedure). 

Ideally, developers could register their visualizations with Snap using a registration 

user interface to a registration database. 

5.2.5 Programming Effort 

Adding Snap’s API to a visualization requires only a small amount of code.  First, 

there may be some initial overhead in enabling the visualization for communication.  In 

the current implementation, this means making the visualization into a COM object.  

Fortunately, the popular development tools can do this automatically. 

Second, the three API elements must be implemented.  Since a visualization already 

has functionality to load data, the Load Procedure can simply call that existing code.  

Hence, this is quite simple to add, requiring essentially two lines of code (the procedure 

declaration and the call).  Likewise, the Action Procedure can use the existing user 
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interface code to perform actions.  However, additional code may be needed to search 

internal data structures to locate the item identified by the given primary-key value.  

Corresponding code that searches for items based on user events (mouse clicks) can be 

copied and modified.  This usually requires 2-10 lines of code.  The Action Event 

simply requires adding the event trigger in the appropriate callback routine of the 

visualization’s user-interface code, requiring one line of code per supported action.  

Also, the data structures may need to be expanded slightly to support the storage of the 

primary-key values. 

Finally, a translator procedure may be needed that converts the input data from the 

memory format (relational data objects) to the input format of the visualization tool.  

However, this could be claimed as a gain, not a cost, because only one such translator 

ever has to be written for each visualization tool.  From the users’ point of view, this is 

a big advantage because traditionally users must write their own translators for each 

visualization they use.  With Snap they need at most one: to convert their data into a 

relational database.  And visualization developers need to supply only one:  to convert 

the relational format to their visualization’s format. 

To snap-enable the Treemap visualization tool, which was originally developed by 

others, required approximately 2 hours of work to add approximately 20 lines of code to 

its software (using Borland Delphi’s Object Pascal).   

In some cases, access to the source code is not necessary.  Some well-designed 

component-based visualizations, such as Spotfire (commercial software), already 

support a full suite of methods and events.  A simple wrapper program can be written in 

Visual Basic (VB) that translates the Snap API protocol to calls to the visualization 
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component.  Snap provides a template wrapper.  Snap-enabling Spotfire required 

approximately 10 lines of VB code. 

Java and web-based applications can be enabled using Internet Explorer (IE).  For 

example, the Hyperbolic-Tree Java applet was enabled using a small VB wrapper to 

control IE, and a simple HTML page to control the Hyperbolic Tree applet using 

Javascript. 

SAS JMP is an example of a visualization package that could not be enabled well.  

Its programming API has many methods, but no events (callbacks).  Hence, the Load 

and Action Procedures could be implemented in the VB wrapper, but the Action Event 

could not.  A request has been given to its developers to include action events. 

5.3 Coordination 

When users coordinate visualizations, snap maintains a graph data structure 

representing the visualizations and coordinations.  Then, when users invoke an action in 

a visualization during coordination operation, the following execution takes place (see 

Figure 5.2): 

1. The visualization notifies Snap of the action and the primary-key value of the 

tuple acted on, via its Action Event.   

2. Snap begins a traversal of the coordination graph starting at that visualization 

and action.   

3. For each visualization encountered in the traversal, Snap invokes the tightly 

coupled action on the visualization: 
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a. If the action is not a load action, then the action is programmatically invoked 

directly on the visualization, passing the primary-key value as parameter, via 

its Action Procedure.   

b. If the action is load, then the Visualization Manager executes the selection 

query using the primary-key value as the query parameter, and loads the 

results into the visualization via its Load Procedure. 

For example, in the file-folders example, when users select the folder with primary-

key value “MyDocs” in the scatter plot, then Snap calls on the Hyperbolic Tree to select 

“MyDocs”.  Then for the tabular visualization, Snap executes and loads the results of 

the query: 

SELECT * FROM files WHERE files.parentFolderID = “MyDocs” 

 

Query

Visualization1

Query

Visualization2

DataAction,
PKvalue

Load

Database

Action,
PKvalueData

Snap-Together Visualization

1

2

3

 

Figure 5.2:   Coordination Operation 
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The coordination graph data structure and coordination propagation traversal 

algorithm provide the generality that makes the Snap architecture flexible for 

visualizations and coordinations (e.g. third level of flexibility).  Users can construct any 

possible combination of visualizations and coordinations as needed. 

5.3.1 Data Structures 

The coordination graph data structure is based on the Snap model, and is composed 

of a list of the currently open visualizations and a list of the currently constructed 

coordinations.  As users construct or delete visualizations and coordinations, Snap adds 

and removes from these lists.  

Coordination Graph data structure: 
 List of Visualization structures 
 List of Coordination structures 

Visualization data structure: 
 Visualization object reference 
 Relation name 
 List of boolean marks for each action (used during propagation) 

Coordination data structure: 
 Pointer to Visualization1 structure 
 Action1 
 Pointer to Visualization2 structure 
 Action2 

 

5.3.2 Algorithm 

The coordination propagation traversal algorithm executes the tight couplings and 

implements the transitivity property of the Snap model.  During coordination operation, 

when users invoke an action on a visualization, a depth first traversal of the 

coordination graph is initiated: 
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Procedure beginPropagation(visualization, action, PKvalue) 
 Clear all action marks in all visualizations 
 Call traverse(visualization, action, PKvalue) 
 
 
Procedure execute(visualization, action, PKvalue) 
 If not marked (visualization, action) then 
  If action = load then 
   Execute visualization query(PKvalue) 
   Call visualization.doLoad(query results) 
  else 
   Call visualization.doAction(action, PKvalue) 
  Call traverse(visualization, action, PKvalue) 
 
 
Procedure traverse(visualization, action, PKvalue) 
 Mark visualization, action 
 For each coordination in graph.coordinationList do 
  If visualization = visualization1 and action = action1 then 
   Call execute(visualization2, action2, PKvalue) 
  Else if visualization = visualization2 and action = action2 then 
   Call execute(visualization1, action1, PKvalue) 

 

5.4 Issues and Tradeoffs 

5.4.1 Independent vs. Integrated Visualizations 

The Snap architecture is designed to use independent visualization tools.  An 

alternate approach would be to fully integrate visualizations by custom implementing 

them within the context of the coordination system (as in Visage [RLS96], DEVise 

[LRB97], Spotfire, etc.).  Each approach has corresponding advantages (+) and 

disadvantages (-): 
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Independent Visualizations Integrated Visualizations 
+ Open system, others can easily add 

visualizations 
- Closed system, only system developer 

can add visualizations 
+ Reuses existing visualizations from the 

field 
- Popular visualizations must be re-

implemented within the system 
+ Visualization development unaffected - Visualizations must use designated 

structures 
+ Visualizations can be used outside the 

system 
- Visualizations only work within the 

system 
+ Clean component-based design, 

visualizations insulated via API 
- Potential inter-dependency 

complexities 
+ Consistent coordination model - Potential coordination inconsistencies 
- Use only existing functionality of 

visualizations 
+ Can add new functionality to 

visualizations 
- Visualization user interface 

inconsistencies 
+ All visualizations implemented with 

same look and feel 
- Potential performance hit + Potential performance boost from 

shared data structures, etc. 
- Static coordination model + Can add advanced custom functionality 

for coordinating dynamic data, edits, 
etc. 

 

The Snap architecture employs a component-based approach, in which 

visualizations are implemented as individual units rather than integral to monolithic 

systems.  This programming approach is becoming increasingly popular in commercial 

visualization and other domains due to benefits of modularity, reuse, etc.  For example, 

AlphaBlox [IDC99] enables rapid deployment of web-based analytical applications by 

dropping visualization and data components into web pages. 

While Snap works well to coordinate full-fledged feature-rich visualization 

applications such Spotfire, the Snap approach steers developers towards implementing 

smaller simple visualization components as in the Hyperbolic Trees applet.  This 

eliminates some of the extra visual clutter of toolbars and menus for each visualization. 
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5.4.2 Effort vs. Payoff 

In the design of the Snap API, part of the goal is to maximize benefits while 

minimizing effort required by visualization developers.  A larger and more complex 

API would enable more functionality (e.g. coordinating dynamic data, edits, etc.), but 

would require more effort for visualization developers and the disadvantages of the 

integrated approach begin to creep in.  Hence, when increasing effort, the law of 

diminishing returns results in reduced payoff.  I believe that Snap finds the sweet spot 

where effort is low and payoff return is maximized. 

5.4.3 Snap vs. Programming 

When constructing coordinated-visualization interfaces, one can either use Snap 

(visualization or coordination flexible) or program the interface by hard coding the 

desired coordinations between visualizations (data flexible or non-flexible).  Each 

approach has corresponding advantages (+) and disadvantages (-): 

 

Snap Programming 
+ Non-programmers  

(for enabled visualizations) 
- Programmers only 

+ Quick and easy - Time consuming and difficult 
+ Can make throw-away solutions for 

temporary or short-term needs 
- Short-term needs go unmet 

+ Interfaces are changeable on the fly - Static, inflexible, slow turn-around 
+ Can prototype many options - Prototypes typically non-functional 
+ Robust coordination model - Prone to mistakes, inconsistencies 
+ Guided by Snap model - Design from scratch 
+ Once enabled, visualizations are 

reusable in many different interfaces 
- Visualizations hard-coded each time 

- Potentially disparate visualizations + Package in custom user interface 
- Bounded functionality + Custom functionality as needed 
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How much effort is saved by using Snap instead of programming a hard-coded 

coordinated-visualization interface by hand?  It is difficult to measure the number of 

lines of code saved because it is not clear what code in the hard-coded interface to 

count.  What would the programmers be starting with?  Snap provides a total solution 

from data to coordinated-visualization interface, that covers a lot of functionality. 

Yet, even more than the number of lines of code is the significant amount of 

consideration and care programmers must employ.  Implementing a coordinated-

visualization interface is very tricky.  An interface with two coordinated visualizations 

may be straightforward, but complexity quickly increases with the number of 

visualizations and coordinations. 

An examination of the Snap’s functionality reveals the amount of complexity that 

programmers must consider when implementing a coordinated-visualization interface.  

First, programmers must consider the design of the coordination.  The Snap model 

provides significant guidance to how the coordinations work.  Programmers must 

implement affordances for actions.  Visualizations must be able to notify of user actions 

and invoke and respond to actions programmatically.  A method is needed to uniquely 

identify data items.  Actions must be propagated to other visualizations.  Functions are 

needed to relate data items between visualizations.  Programmers must keep track of 

which visualization initiated the action, ensure that each action in each visualization 

propagates to all others as needed, ensure that programmatically invoking actions 

doesn’t generate new actions, and ensure that each action gets invoked on a 

visualization only once.  Finally, data handling is needed for processing, subsetting, and 

loading data into visualizations, possibly as a result of coordinations. 
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Naturally, this process is prone to errors, bugs, incomplete implementations, and 

inconsistencies in design.  For example, many web designers fail to include bi-

directionality in overview-and-detail coordinations between frames.  Selecting an item 

in the overview highlights the item and displays corresponding details in the detail 

frame.  However, navigating the detail frame using the scroll bar or next/previous 

buttons on the page fails to update the highlight in the overview.  This results in 

inconsistent state and confusion. 

Whereas, Snap opens design capability to non-programmers.  This enables the 

construction of coordinated-visualization interfaces in many situations where a 

requirement for programming would immediately prevent its use.  Snap does not 

require programming savvy, development tools, knowledge of the visualizations’ 

implementation, etc. 

5.4.4 Scalability 

The Snap architectural approach of using independent visualizations has a potential 

disadvantage in system performance.  In direct-manipulation environments, user actions 

should result in visual feedback within 100 milliseconds [Shn98].  Hence, in 

coordinated-visualization interfaces, propagated actions should occur within 100 

milliseconds from the user action invocation.  In an integrated approach, all 

visualizations can be implemented to use shared data structures and optimized for 

coordination operation.  However, with independent visualizations, each visualization 

instantiates its own potentially-large data structures and may not have been 

implemented from the perspective of coordination.  This could mean that 

programmatically invoking actions on visualizations is slow. 



 

 87 

In general, displaying several visualizations simultaneously is not a problem for 

memory and swapping.  Modern systems are designed to handle many open 

applications and windows.  Screen space is the limiting factor here.  However, if 

invoking actions on visualizations is slow, then the number of open visualizations may 

serve to multiply that delay.  Furthermore, a coordination propagation is only as fast as 

the slowest visualization involved in the propagation. By default, in the COM 

implementation, API calls are blocking.  This means that while an action invocation is 

executing, Snap is stalled.  There are two potential bottlenecks in the API:  the Action 

Procedure and the Load Procedure. 

The Action Procedure may have to perform a search on the visualization’s internal 

data structures to locate a tuple by its primary-key value.  For naively implemented 

visualizations, this requires an O(n) search.  For example, Spotfire’s VB wrapper 

executes an O(n) search using Spotfire’s programmer API.  Performance tests on a 300 

Mhz Pentium computer measures this search at about 1 second per 1000 tuples.  This 

can be vastly improved using hash tables or other data structures to map primary-key 

values to Spotfire data-structure indices or pointers. 

A potential solution to this problem would be for Snap to manage hash tables for 

each visualization.  After loading a relation, a visualization could perform a single 

traversal of its internal data structure, reporting each primary-key value and internal 

pointer pair to Snap.  Snap could store these in a hash table.  Then, when invoking an 

action on a visualization, Snap could provide a direct pointer to the tuple. 

The Load Procedure is used to initially load data into a visualization.  Slow 

performance here is acceptable.  However, it is also often used to repeatedly load 
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different data into a visualization during a drill-down coordination.  Fast performance in 

this case is needed to enable users to quickly explore aggregates.  Again, testing 

Spotfire (a known slow loading program) on the same computer with the web log data 

(about 25,000 tuples, 10 attributes), Spotfire loads approximately 1000 tuples per 

second with a minimum of about 1 second.  Hence, displaying the whole relation is a 

significant delay.  However, in a drill-down coordination, only a fraction of the data is 

loaded.  Users can explore a million tuple relation using aggregation and drill-down, by 

displaying 1000 aggregates in one Spotfire plot and 1000 tuples of a selected aggregate 

in another plot.  That results in a 1 second delay for each aggregate. 

When dealing with large relations or slow visualizations, there are some potential 

solutions to help users avoid long unwanted delays: 

• Warning:  The textual list visualization displays a warning message if it 

attempts to load a relation of more than 200 tuples.  Users have the option to 

cancel the load entirely. 

• Loose coupling:  Instead of loading immediately, a slow visualization could 

simply indicate that it has become out of date with respect to coordination.  

Then, users could manually trigger an update when desired. 

Each of these could be implemented within Snap as a general solution.  Users could 

control these options through the Snap user interface. 

5.5 Implementation Details 

Snap is currently implemented in the Windows platform.  It is based on the 

Microsoft COM/ActiveX model for communication in the API.  Visualizations are 

COM objects, exposing the visualization API as methods and events.  Snap creates and 
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controls visualizations using OLE automation.  It uses the Windows API and the 

visualization’s window handle to insert the snap button into each visualization and to 

track window resizing for saving and opening visualization groups. 

Snap accesses ODBC databases using the Microsoft DAO object model.  This 

allows Snap to extract schema information, execute queries, and extract data.  Snap can 

reliably extract table and query information, but can retrieve join relationship 

information for only some database formats.  Snap has been used with Microsoft Access 

and Oracle databases.  For Access databases, Snap instantiates the Access GUI to allow 

users to edit and manipulate the database.  For Oracle and others, Snap provides a 

simple SQL query text editor. 

Snap is implemented in Visual Basic, an ideal environment for working with COM.  

There are four primary code modules (Figure 5.3): 

• Snap Menu:  implements the Snap Menu, and visualization registration. 

• Database Manager:  handles database access, querying, schema extraction. 

• Coordination Manager:  implements the Snap Specification dialog, 

coordination data structures and propagation algorithm. 

• Visualization Manager:  handles communication with visualizations, and 

implements the snap button.  Instantiated for each visualization. 

Additional modules handle the user interfaces and functionality for saving groups, 

history keeping, shopping basket, drag-and-drop data extraction, and search box.  There 

is also the implementation of a few of the visualizations (text list, table, outliner) and 

wrappers for others.  The compactly designed Snap code is on the order of 2000 lines of 
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VB code, not including user interface properties and layout definitions.  The 

implemented visualizations and wrappers are an additional 2000 lines. 

 

Database

Database
Manager

Coordination
ManagerSnap

Menu

Visualization
Managers

Visualizations

 

Figure 5.3:   Software modules 

 

5.6 Extensions 

The Snap software architecture lays out a foundation on which several interesting 

extensions could be built. 

5.6.1 Packaging and Deploying 

One of the primary uses of Snap is to allow designers or data disseminators to 

construct coordinated-visualization interfaces for deployment to other users.  Snap has 

the capability to save coordinated-visualization groups.  But to truly enable deployment, 

a mechanism is needed to package saved groups as standalone executables. 
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Essentially, Snap could become the ‘Visual Basic’ of information visualization.  

Designers could quickly construct an interface making use of third party visualization 

components, and essentially compile it into an executable containing only the necessary 

visualizations and functionality for coordination operation. 

Licensing issues with commercial visualizations could be handled in the same way 

that VB handles commercial controls.  Designers purchase the visualizations, and can 

distribute them in their constructed interfaces.  But users of the constructed interfaces, 

cannot switch to ‘construction mode’ (VB ‘design mode’) to make new interfaces with 

the commercial visualizations. 

5.6.2 Collaboration 

The Snap architecture provides capabilities that could support collaborative 

visualization.  There are two forms of collaboration with respect to time:  synchronous 

and asynchronous. 

5.6.2.1 Synchronous Collaboration 

Synchronous collaboration refers to multiple users working together at the same 

time.  Often, the users are at different computers and locations. 

When coordinating independent visualization tools with Snap, there is absolutely no 

reason why the visualizations have to be running on the same computer.  Snap could be 

used to synchronize information exploration on multiple users’ screens (similar to Suite 

[DC95]).  One user could explore and point out interesting phenomena in the data while 

other users at remote locations watched.  In fact, different users could use different 

visualizations according to their preferences (similar to RENDEZVOUS [Hil92]). 
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Snap provides a very efficient communication protocol that could easily be 

transported over the internet.  In fact, COM already has support for remote procedure 

calls and distributed computing called DCOM.  The Snap API could simply be invoked 

on visualizations running on remote machines. 

5.6.2.2 Asynchronous Collaboration 

Asynchronous collaboration refers to multiple users working together but at 

different times.  Snap’s capability for saving coordinated-visualization interfaces and 

history keeping could be used to support this type of collaboration too.  The history 

keeping could be used to easily save the current state of exploration during coordination 

operation.  This could then be published so that other users could see what has been 

discovered, similar to LiveDocs [MHG00].  In addition, the full history could be used to 

create animations of exploration for other users, as in SimPLE [PRR99].  For example, 

a professor could navigate through a scientific database to show several important 

phenomena, and then send out the history to students to replay for homework.  Again, 

Snap provides a very efficient mechanism to save and distribute such histories along 

with the specification for the saved interface. 

5.6.3 Dynamic Data Consistency 

Some visualizations may allow users to edit the data, such as adding, deleting, or 

renaming a file in the file-folders example.  Snap could be extended to coordinate data 

consistency between visualizations in the face of changing data.  An additional 

procedure could be added to the API to notify of changes to individual tuples.  Ideally, 

visualizations could reload only changed tuples without reloading the entire relation. 
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This capability might also enable the display of dynamic databases, as in stock 

market applications or air traffic control.  If the data update rate is low (e.g. changing a 

few tuples per second), Snap could update visualizations with changing data values.  

However, further research is needed to explore specialized architectures that can scale 

up to high data update rates. 

5.6.4 Integrating into Operating System 

While the Snap architecture is currently implemented as a standalone application, it 

could be integrated into data systems or operating systems.  For example, Snap could be 

integrated into the ODBC architecture in the Windows operating system.  The Snap 

Visualization API could be adopted into the current ODBC API standard.  Snap’s GUI 

could become part of Windows, and the snap buttons part of the window decorations.  

Then, ODBC compliant applications could be used as snap-able visualizations. 

This approach has several major benefits.  ODBC benefits by adding this powerful 

new feature.  Snap benefits by joining an existing strong standard and by potential 

improved performance due to integration.  Visualizations benefit by simplifying 

development due to a single unified standard.  This approach might also enable more 

applications, such as drawing from multiple distributed databases. 

5.7 Summary 

The Snap software architecture enables flexibility in data, visualizations, and 

coordinations.  Its visualization API enables developers to easily snap-enable their 

independent visualizations.  The data structure and algorithms are based on the sound 

Snap model.  The architecture clearly demonstrates major advantages (and some 
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disadvantages) over programming and the fully integrated approach.  It provides a solid 

foundation for potent new future directions. 
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Chapter 6:  
Evaluation of Coordination Construction 
and Operation 

 

 

Studying the use of Snap is important for two reasons: 

• To evaluate the usability and benefit of the Snap system itself and discover 

potential user interface improvements. 

• To gain a deeper level of understanding about users’ ability to understand, 

construct, and operate coordinated-visualization strategies in general. 

Two separate studies were undertaken to evaluate two distinct aspects of 

coordination [NS00b]: 

1. Construction:  First, can users successfully construct their own coordinated-

visualization interfaces? 

2. Operation:  Second, can users then operate the constructed coordinated-

visualization interfaces to explore information beneficially? 

6.1 Evaluation of Coordination Construction 

The goal of the first study is to determine if users can learn to construct coordinated-

visualization interfaces and how difficult it is for users to construct them, in terms of 

success rate and time to completion, and to identify cognitive trouble-spots in the 

construction process.  Hence, this study examines the flexibility that Snap provides.  

Can users grasp the concept of coordinating two independent visualizations together to 

form a unified browsing tool?  What cognitive issues are involved, how much training 
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is required, how do users’ backgrounds affect performance, and can relatively novice 

users construct powerful exploration tools in a short time?  This study also reveals 

potential Snap user interface improvements. 

The Snap-Together Visualization system is used to examine these issues.  Currently, 

Snap employs a 2-step approach to constructing coordinated-visualization interfaces.  

First, users drop relations into visualizations.  Second, users snap the visualizations 

together to coordinate actions between them.  For this study, Snap uses Microsoft 

Access GUI to enable users to create and edit queries. 

6.1.1 Procedure 

Six subjects participated, one at a time.  Four of the subjects were employees of the 

U.S. Census Bureau, three of whom were data analysts or statisticians, and one a 

programmer.  The other two subjects were computer science graduate students on 

campus. 

First, background information was obtained from each subject concerning their 

occupation and experience with:  census data, computers, databases, Microsoft Access, 

visualization tools, and programming. 

Then, each subject was trained on Snap-Together Visualization.  The training 

program consisted of: 

1. A quick demonstration of Snap by the administrator to give the subject an 

overview and motivation. 

2. Review of various background concepts including: 

• Relational database concepts including: tables, records, fields, primary keys, 

foreign keys. 
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• Database query concepts including:  projection, selection, sort, join. 

• Snap model concepts. 

3. Detailed instruction on the use of Snap and Microsoft Access.  The subjects 

walked through the construction of a few variations of coordinated-visualization 

interfaces for browsing census data.  This demonstrated how to construct 

common types of coordinations. 

Then, when confident to continue, each subject began the testing phase.  Subjects 

were given a database of census data for the U.S. states and counties, and Snap 

(including a set of Visualization tools) and Microsoft Access.  Testing consisted of three 

exercises in which subjects were asked to construct a coordinated-visualization user 

interface according to a provided specification: 

Exercise 1:  The first specification consisted of a printed screenshot of the desired 

user interface (Figure 6.1).  The interface is a pair of textual visualizations with 

overview-and-detail coordination for browsing state data. This trial was designed to be 

fairly easy, to be similar to those constructed in the training, and to build confidence. 

Exercise 2:  The second specification was also a screenshot (Figure 6.2), but more 

difficult.  It uses a textual list, Spotfire scatterplot, and tabular visualization to browse 

census data for states and counties.  It involved a one-to-many join relationship, so that 

selecting a state would display data for that state’s counties. 

Exercise 3:  The final specification consisted of a textual description of the 

browsing task that the constructed interface should support:  “Please create a user 

interface that will support users in efficiently performing the following task: To be able 

to quickly discover which states have high population and high Per Capita Income, and 
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examine their counties with the most employees.”  This trial was designed to test if 

subjects could think abstractly about coordination, think task-oriented, think in terms of 

user-interface design, and to allow for potential creativity and variation. 

 

 

Figure 6.1:   User interface specification for exercise 1 
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Figure 6.2:   User interface specification for exercise 2 

 

Finally, subjects were given the opportunity to freely explore the system, describe 

problems with the Snap user interface, and offer suggestions for improvement. 

The following variables were measured: 

• Subjects’ background information. 

• Learning time. 

• Success (y/n or how close to success). 

• Time to completion. 

This study also observed: 
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• Cognitive trouble spots (in training and test trials). 

• Snap user interface problems. 

6.1.2 Results 

From the background survey, none of the subjects except the Census programmer 

had experience with Microsoft Access or SQL, and little exposure to relational database 

concepts.  The Census analysts had significant experience with census data, but 

generally used flat files or spreadsheets.  Each had experience with only basic 

visualization tools (e.g. Excel charts). 

All the subjects completed the training phase in 30-45 minutes.  They all were able 

to complete all three exercises, with occasional help in wading through Access’s visual 

query editor.  They accomplished exercise 1 in 2-5 minutes, and exercise 2 in 8-12 

minutes.  They spent 10-15 minutes on exercise 3 until they were satisfied with their 

solution. 

In general, the subjects were quick to learn the concepts and usage, and were very 

capable to construct their own coordinated-visualization interfaces.  Several stated that 

they had a sense of satisfaction and power in being able to both (a) so quickly snap 

powerful exploration environments together, and (b) with just a single click effect 

exploration across several visualizations and see the many parts operate as a whole.  

They reported that it made exploration seem effortless, especially in comparison to the 

standard tools they are used to.  As to the subjects’ general reaction to Snap, they 

clearly showed enthusiasm.  There may have been social pressure to respond positively, 

since the subjects knew that the administrator of the experiment was also the developer 

of the Snap system. 
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There was an interesting difference between the reaction of the data analysts and 

programmers (census programmer and computer science students).  The programmers 

commented enthusiastically about the component based programming approach, and the 

ability to rapidly construct new interfaces.  Whereas, the data analysts commented about 

being able to explore the data thoroughly and efficiently.  They did not see it as 

construction, but as exploration. 

In fact, the data analysts performed better than the programmers.  They learned the 

database concepts quicker, completed the exercises quicker, and constructed creative 

interesting new interfaces.  Perhaps they were more motivated by the use of examples 

involving Census data.  Even during the training, they were already trying variations of 

coordinations and exploring the data.  Two pointed out various anomalies in the data.  

After finishing the exercises, these subjects each voluntarily stayed for an additional 

hour to discuss and try other examples.  All four Census subjects expressed desire to use 

Snap in their work.  In fact, a collaborative effort has been undertaken. 

An important result was the creativity and variation evident in the subjects’ 

solutions to exercise 3.  Subjects were able to design user interfaces that made cognitive 

sense to their own perspective on the data.  They used a mixture of visualizations 

including tables, scatter plots, and lists.  For example, while the expected design was 

two scatter plots with a drill-down coordination (one-to-many, select to load), one of the 

data analyst subjects augmented this design with a pair of lists for the state and county 

names.  The subject stated that this would help to see which state and county was 

currently selected in the scatter plots, and also allow for accessing states by name which 

would be difficult with the scatter plot alone.  Another subject who preferred to see 
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numeric values placed the counties in a table sorted by number of employees.  One had 

even constructed an interface using the Treemap visualization, which is generally 

considered a more advanced visualization difficult for novices.  In addition to variation 

in user interfaces, subjects made use of the transitive property of coordination to 

coordinate visualizations in different pairings. 

Overall, subjects did not have problems grasping the cognitive concept of 

coordinating visualizations.  They were able to generate designs by visual duplication 

and by abstract task description.  Results from exercise 3 demonstrated that these users 

were able to design appropriate coordinated-visualization interfaces.  These 

encouraging results indicate that users can handle a level of design in which they piece 

together pre-designed components to construct a larger design.  Snap apparently finds a 

middle ground between usage (the realm of end-users) and design (the realm of 

experienced HCI practitioners) appropriate for these data-savvy users.  This validates 

the primary benefit of Snap, its flexibility. 

The problems subjects did have were in manipulating the Snap and Access user 

interfaces.  Creating queries was by far the most difficult part of the construction 

process for the subjects.  Learning to use Access and its query editor is a challenge in 

such a short time. 

6.1.3 User Interface Issues 

Understanding the basic Snap model was critical to construction.  However, the 

current Snap user interface and the form fill-in style of the Snap Specification dialog 

does not reflect this model well.  This study identified four major trouble spots in the 

interface:  
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1. The terminology of the snap-able actions “select” and “load” caused some 

confusion.  It was not clear enough that these represented user interface actions.  

Apparently some subjects were confusing “select” with the database query sense 

of selection. 

2. For simplicity, Snap uses the Access query editor.  However, this made 

constructing a drill-down coordination (one-to-many, select to load) very 

laborious, and subjects sometimes got lost in the 3 step process:  writing the 

parameterized query, opening the query in a visualization, and specifying the 

coordination. 

3. When constructing interfaces of three or more visualizations, subjects 

sometimes forgot what coordinations they had constructed between 

visualizations.  They had to recheck each pair. 

4. When subjects weren’t quite sure what coordinations they should construct, they 

would often “just try stuff” and see how it behaves.  A snap debugging mode is 

needed to help them see how the tight-couplings propagate between the 

visualizations. 

Redesigning the Snap user interface around an overview diagram would solve these 

problems.  A node and link diagram could represent the visualizations as nodes and 

coordinations as links between them.  This overview could become the primary user 

interface for constructing, editing, examining, and debugging coordinations.  Such a 

visual representation with direct-manipulation interaction would closely reflect the 

conceptual Snap model.  Hence, this would likely reduce users’ training time as well. 
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In addition, while the ability to create queries with Access enables more complex 

scenarios, it is a burden for common simple coordinations.  Basing the Snap 

Specification dialog on the database schema diagram would more closely match users’ 

mental model of the data.  This would simplify constructing drill-down coordinations 

since Snap could generate the parameterized selection queries automatically.  For 

projection queries, expanding the Snap Menu window to include attribute names would 

allow users to directly select desired attributes to load into visualizations.  Together, 

these modifications would obviate the need to use Access to manually create queries in 

common cases.  This would further reduce training time to almost nothing. 

Also, window management is a serious problem.  Subjects spent considerable 

amounts of time rearranging visualization windows on the screen into nicely tiled 

layouts.  Others have proposed solutions to this general problem (see [KS97] for a 

review). 

6.2 Evaluation of Coordination Operation 

The goal of the second study is to measure the added value of coordinated 

visualizations over independent or single visualizations in terms of user task times and 

subjective satisfaction for browsing large information spaces.  The visual feedback 

across visualizations could be distracting or disorienting for users.  But if there is a 

benefit, what is its magnitude? 

While there are many possibilities, this study examines the overview-and-detail 

coordination.  This coordination has two enhancements over the traditional single-

visualization detail-only display: 
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1. Overview:  A display enhancement that depicts the full breadth of the data in a 

compact form, like a table of contents. 

2. Coordination:  An interaction enhancement that allows users to select an item 

in the overview to scroll the detail to that item.  Likewise, directly scrolling the 

detail highlights the current item in the overview. 

Chimera’s [CS94] result seems to indicate that overview-and-detail should perform 

better than detail-only.  But, if so, which enhancement is the important factor that 

causes improved user performance?  Is it (a) the information displayed in the overview, 

or (b) the coordination between the overview and detail? 

Hence, the purpose of this study is not to compare a coordinated user interface with 

the best alternative (see section 2.4 for such studies).  Instead, the purpose is to further 

understand coordination and its users.  Specifically, why and how much does the 

overview-and-detail coordination improve over detail-only, in the context of a single 

popular type of navigation (one-dimensional scrolling) for browsing tasks?  What is the 

value or detriment of visualizations that are not coordinated?  What are users’ reactions 

to these interfaces? 

6.2.1 Independent Variables 

User interface:  A simple textual user interface, constructed with Snap, uses the 

overview-and-detail coordination for browsing population statistics of 45 of the U.S. 

states from the Census Bureau’s 1990 census.  Three treatments:  (see Figure 6.1) 

1. Detail-Only:  A single scrolling textual report of the states, in alphabetical 

order, and their data. 
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2. No-Coordination:  The same visualization as Detail-Only, with the addition of 

a textual overview tiled on the left.  The overview displays an alphabetical list of 

the names of the states.  The visualizations are not coordinated. 

3. Coordination:  The same visualizations as No-Coordination, with the addition 

of coordination between them.  In Snap, this tightly couples the overview’s 

select action to detail’s scroll action. 

At first, the inclusion of the No-Coordination user-interface treatment might seem 

spurious.  However, it is included for two important reasons:  First, No-Coordination 

will reveal which aspect of the coordinated-visualization interface approach is most 

critical:  the multiple visualizations or the coordination.  Second, designers actually do 

build such systems that have uncoordinated visualizations.  Microsoft Access is an 

example.  Uncoordination also occurs when using multiple tools by different 

developers.  For example, HCIL members regularly use Spotfire, Excel, Access, and 

Netscape to examine the HCIL web logs [HS99] and technical-report database.  

However, they are not coordinated.  This is precisely the problem Snap was designed to 

solve.  Hence, it is important to gather data on No-Coordination approaches as well.  

Task:  A variety of browsing tasks, using a question and answer approach.  Nine 

treatments: 

1. Coverage-yes:  “Does the information include statistics about the state of 

Ohio?”  where Ohio is included in the data.  

2. Coverage-no:  Same as Coverage-Yes, but where the state is not included in the 

data.  

3. Overview patterns:  “How many states in the list begin with the letter M?”  
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4. Visual lookup:  “What is the population of the 6th state from the bottom of the 

list?”  

5. Nominal lookup:  “What is the population of Georgia?”  

6. Compare-2:  “Which of the following states has higher Median Family Income:  

California or Washington?”  

7. Compare-5:  “Which of the following 5 states has higher Median Household 

Income:  Florida, Texas, Louisiana, Alaska, or Oregon?”  

8. Search for target value:  “Which state has Average Commute Time of 31?”  

9. Scan all:  “Which state has the highest College Degree %?”  

The tasks are listed here in order from easy to difficult based on the experiment 

results.  The actual order they were administered was:  5, 1, 6, 8, 3, 7, 2, 9, 4. 

6.2.2 Dependent Variables 

User performance time:  Time to correctly complete each task, not including 

reading the task question. 

User subjective satisfaction:  Subjects rated their satisfaction with each interface 

on a scale of 1 to 9 on four categories (with scales):  comprehensibility (confusing to 

clear), ease of use (difficult to easy), speed of use (slow to fast), overall satisfaction 

(terrible to wonderful). 

6.2.3 Procedure 

The 18 subjects were students and staff from campus, and were paid $10 to 

participate.  A within-subjects design was used.  Each subject used all three user 

interfaces to perform all nine tasks.  To avoid repetition, three different but similar sets 

of task questions were used.  To counterbalance for potential order effects, all 6 possible 
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permutations of interface order were each assigned 3 times.  The three task sets were 

not permuted. 

For each user interface, subjects were first trained in its use and performed several 

practice tasks before beginning the timed trials.  After finishing all three interface 

treatments, subjects then completed the subjective satisfaction questionnaire. 

6.2.4 Results 

Analysis of the data reveals a strong and interesting result.  Figure 6.3 shows the 

mean user-performance times for each task and interface.  A 3x9 within-subjects 

ANOVA reveals that the user interface effect, task effect, and interaction effect are all 

statistically significant at p<.001.  Nine one-way ANOVAs reveal that user interface is 

significant for all 9 tasks at p<.001 (see Appendix C section C.2.4 for details of the 

means, standard deviations, F values and significance levels). 

Finally, individual t-tests between each pair of user interfaces within each task 

determine performance advantages.  For tasks 1, 2, and 3, the Coordination and No-

Coordination interfaces are both significantly faster than the Detail-Only interface at 

p<.001, but not proven different from each other.  Whereas, in tasks 5 through 9, 

Coordination is significantly faster than both No-Coordination and Detail-Only at 

p<.001, and the latter are not proven different from each other.  However, while task 4 

(Visual lookup) could be included in the second group of tasks, it may classify as an in-

between case.  For this task, Coordination is significantly faster than the other two user 

interfaces at p<.005, but No-Coordination is marginally significant over Detail-Only at 

the p<.07 level. 
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Figure 6.3:   Average user performance time for tasks. 
The coordinated interface has significantly faster performance in most cases. 

 

First, Coordination results in major improvement in user performance time over 

Detail-Only for all tasks.  On average, Coordination achieves an 80% speedup over 

Detail-Only for easy tasks and 50% for difficult tasks.  The least improvement, about 

33%, is in task 6 (compare-2).  This task had the lowest interaction-time to thinking-

time ratio.  

The No-Coordination interface results in a nearly binary pattern, and is likely the 

source of the interaction effect between task and interface (see Figure 6.4).  For tasks 1-

3, No-Coordination performs faster than Detail-Only, and its averages are similar to 

Coordination.  In these tasks, subjects only needed the information in the overview to 

accomplish the task.  Whereas, in tasks 5-9 the Coordination interface is faster than No-
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Coordination, and the averages for No-Coordination are similar to Detail-Only.  In these 

tasks, subjects needed to access the details of the data.  Observing subjects’ behavior as 

they performed these tasks revealed that when using No-Coordination they tended to 

ignore the overview.  The lack of significant difference between No-Coordination and 

Detail-Only in these cases does not imply that they are necessarily the same.  It is 

conjectured that they are the same due to the observation of the users.  In any case, what 

is important is that Coordination is significantly faster than No-Coordination in these 

cases.  Hence, in tasks where access to details is important, undoubtedly a majority in 

common applications, coordination is absolutely critical. 

 

 Tasks 
 1-3 4-9 

Slower Group Detail-Only Detail-Only 
No-Coordination 

Faster Group No-Coordination 
Coordination 

 
Coordination 

Figure 6.4:   User interfaces grouped by user performance in tasks. 
The faster groups are significantly faster than the slower groups at p<0.005. 

 

Task 4 (Visual lookup) might classify as an in-between case.  With No-

Coordination, many subjects determined the name of the target state from the overview, 

then scrolled to it in the detail view.  With Detail-Only, they scrolled to the bottom, then 

scrolled back up while counting, and sometimes lost track.  Apparently, this is a case 

where just having the contextual information of the overview was somewhat 

advantageous.  Even so, Coordination was still a major improvement over both. 

In fact, an important result is that Coordination performance times for lookup tasks 

(4 and 5) are in the same extremely fast range as overview tasks 1-3.  Whereas, No-
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Coordination times drop to Detail-Only level performance.  When looking up details, 

perhaps the most common task, Coordination especially excels. 

In general, overview-and-detail coordination greatly improved performance over 

detail-only scrolling.  Clearly, a major advantage of the coordination is the ability to 

directly select a target in the overview to immediately locate its details.  Whereas, the 

scrolling interfaces requires careful searching while dragging the scroll bar thumb.  

Observing the subjects as they performed the tasks revealed that they were more likely 

to explore when using Coordination.  For example, in the Compare-2 and Compare-5 

tasks, subjects were more willing to recheck their answers with Coordination.  With 

Detail-Only and No-Coordination subjects spent extra effort to mentally alphabetized 

the 5 states to compare so as to minimize their scrolling effort.  Several subjects 

reported verbally and on the questionnaire that scrolling was difficult.  This is surprising 

since scrolling is a fundamental component of current GUI systems and perhaps the 

most common navigational method.  The Coordination interface could be considered an 

improved scroll bar that facilitates exploration. 

6.2.5 Subjective Satisfaction 

With the satisfaction data (Figure 6.5), a 3x4 within-subjects ANOVA indicates that 

user interface, subjective satisfaction category, and interaction effect are all significant 

at p<.001.  One-way ANOVAs for each category indicate that Comprehensibility, Ease 

of use, Speed of use, and Overall Satisfaction are all significant at p<.001 level (see 

Appendix C section C.2.4 for details of the means, standard deviations, F values and 

significance levels). 

 



 

 112

1

2

3

4

5

6

7

8

9

Comprehen-
sibility

Ease of Use Speed of Use Overall

Category

R
at

in
g 

  (
be

tte
r »

)

Coordination
No-Coordination
Detail-Only

 

Figure 6.5:   Average user subjective satisfaction. 
The coordinated interface rates significantly higher in all four categories. 

 

Analyzing each pair of interface treatments within each category reveals that all 

pairs are significant at p<.001 except:  Detail-Only and No-Coordination in Ease of Use 

are significant at p<.05 and the same pair in Comprehensibility are not proven different. 

Coordination is a clear winner, gaining nearly twice the rankings of Detail-Only and 

No-Coordination in Ease, Speed, and Overall.  On average, subjects ranked 

No-Coordination 1-2 points higher than Detail-Only, except in Comprehensibility they 

ranked about the same.  While completing the survey, several subjects stated that 

No-Coordination was only useful for the overview tasks. 

6.2.6 Answers 

Returning to the research questions:  Which factor is more critical, the overview 

information or the coordination?  The answer is nearly binary.  If only the overview 

information is needed, then naturally coordination is not necessary.  But for the 
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important cases where access to details is needed, then coordination is everything.  

What is the magnitude of the benefit?  For the three most difficult tasks, the coordinated 

version cut tasks time in half.  This study also reveals the importance of good overview 

design to enable common questions to be answered directly from the overview. 

When first presented with the No-Coordination interface, many subjects 

immediately attempted to click in the overview expecting the detail view to change, 

even when they had not yet seen the Coordination interface.  Hence, not only were users 

not distracted by this coordination, but they wanted and expected it!  They were visibly 

distraught when the interface did not behave as they hoped.  Even more, they were 

clearly elated when presented with the Coordination interface, as the subjective 

satisfaction data indicates.  Subjects expressed appreciation for interactive coordination 

that sped their tasks. 

6.3 Combined Analysis 

Combining the results from these two studies may indicate the breakpoint at which 

time savings during coordination operation surpass coordination construction time.  In 

exercise 1 of the first study, subjects constructed the same user interface as was used in 

the second study for browsing tasks.  The time cost of constructing the coordinated 

interface was about 2-5 minutes, while it saved about 0.6-1.5 minutes over the standard 

Detail-Only interface for the more difficult tasks.  Hence, after just a few tasks, users 

are already reaping savings when constructing their own coordinated interface.  Of 

course, it is difficult to factor in learning time and effects of sharing saved interfaces.  

Nevertheless, this simple analysis reveals that customized information visualization is 

within the grasp of data users. 
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6.4 Summary 

Overall, the overview-and-detail coordination offered a 30-80% speedup over 

detail-only scrolling for all nine user tasks.  While the uncoordinated overview was 

sufficient for overview only tasks, coordination was critical when accessing details.  

Users understood and appreciated this coordination.   

Data-savvy users successfully and enthusiastically designed and constructed 

coordinated interfaces of their own.  Users showed creativity and variation in their 

designs.  These users are clearly ready for and strongly desire significantly more 

advanced tools than standard detail-only, uncoordinated, or hard-wired systems.  While 

these cognitive issues were examined within the Snap platform, I believe that these 

results will apply to similar coordinations and flexibility in other systems. 

For practitioners, these studies indicate that Snap can be used in its present form, or 

that the Snap coordination concepts can be implemented into other systems, to greatly 

enhance the user experience. 

For researchers, several open questions require further study.  Other types of 

coordination, such as brushing and linking, and drill down need to be empirically 

evaluated.  In this study, the use of the No-Coordination user-interface treatment was 

very successful in identifying the interaction effect between task and coordination.  

Future studies should exploit this same approach.  Also, a browsing task taxonomy is 

needed for the task independent variable.  This study used a variety of exploration tasks, 

but there may be others to consider.  Finally, additional evaluation will be needed to 

examine the effects of Snap user-interface improvements identified in the study on 

construction.
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Chapter 7:  
Conclusion 

 

 

Snap-Together Visualization is a conceptual model, user interface, software 

architecture, and implemented system that allows data users to rapidly construct 

customized coordinated-visualization interfaces without programming.  Users can 

dynamically mix and match a variety of visualizations on the fly, and specify common 

coordinations such as brushing and linking, overview and detail, and drill down.  

Visualization developers can easily snap-enable their visualizations using a simple API, 

allowing users to coordinate them with many other visualizations. 

Empirical studies of Snap revealed benefits, cognitive issues, and usability 

concerns.  Data-savvy users successfully, enthusiastically, and rapidly designed 

powerful coordinated-visualization interfaces of their own.  An overview-and-detail 

coordination reliably improved user performance by 30-80% over detail-only and 

uncoordinated interfaces for most tasks. 

7.1 Contributions 

This research on Snap-Together Visualization contributes six major innovations: 

• Conceptual model:  a formal model of visualization coordination based on the 

relational data model and graph model that provides a sound underlying theory 

and a language for specifying coordinations. 

• User interface:  a user interface for constructing coordinated-visualization 

interfaces without programming. 
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• Software architecture:  an architecture for coordination operation that easily 

integrates independent visualizations using a simple API, enabling flexibility in 

data, visualizations, and coordinations. 

• Empirical evaluation:  an evaluation of users’ ability to construct and operate 

their own coordinated-visualization interfaces. 

• Implementation:  an implemented system that realizes the model, user 

interface, and architecture. 

• Flexibility framework:  a conceptual framework that helps to lay out the space 

of coordinated-visualization systems based on their level of flexibility in data, 

visualizations, and coordinations. 

Significant evidence validates Snap as both: 

• Useful:  a plethora of examples of Snap usage demonstrate its usefulness and 

breadth of applicability (Appendix A).  At HCIL, snap has been used in several 

research projects to explore possibilities, and is currently in use at the Census 

Bureau to expand data visualization capabilities.  For example, Fredrikson 

[FNP99] used Snap to explore approaches for aggregation strategies by 

temporal, geographical and categorical attributes.  Snap has already had 

significant implementation impact at several organizations including the Census 

Bureau, Spotfire, WestLaw, and HCIL. 

• Usable:  user studies indicate that Snap is quite usable with training, and user 

interface improvements have been outlined that will increase its usability and 

substantially reduce training requirements. 



 

 117

7.2 Uses 

7.2.1 Users 

Snap can be used for several different purposes.  Data users can explore their data 

by constructing custom visualization user interfaces.  User interface designers can 

quickly prototype many different variations of interfaces, and produce interfaces for 

data dissemination.  Researchers can collaborate by combining their visualizations. 

Snap overcomes a serious problem in information visualization research:  the 

isolation of visualizations.  Researchers have created a variety of good visualizations, 

which unfortunately are not coordinated.  This makes it difficult for researchers to apply 

and build on each others work.  Snap multiplies the power of visualizations by enabling 

them in more powerful coordinated-visualization interfaces. 

7.2.2 Systems 

The Snap model, user interface, and architecture could be employed in a variety of 

systems.  The current Snap implementation focuses on easily enabling the integration of 

independent visualization tools from the field.  To further this goal, Snap and its API 

could be integrated into a data standard such as ODBC to provide universal support and 

a closer coupling to data services.   

Snap could also be implemented within integrated visualization systems such as 

Datadesk, Spotfire, Visage, DEVise, Access, and Excel.  These systems provide users 

with a toolbox of cleanly designed visualization components that users could coordinate 

for exploring data within the system.   

Snap could also be used in rapid-application-development (RAD) systems such as 

Visual Basic.  These tools already enable pseudo-programmers to easily manage data 
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schemas and load data into simple visualization components, all using the RAD GUI 

(e.g. without actually programming).  Snap capability would be an ideal next step to 

enable the users to also coordinate the visualizations with programming. 

7.3 Benefits 

Snap has many benefits.  For visualization researchers and developers, Snap: 

• Reuses visualizations.  Each visualization needs to be developed only once. 

• Simplifies visualization development.  Developers can focus efforts on their 

primary visualization, and use Snap to incorporate supporting visualizations. 

• Eliminates the need to program coordinations. 

• Steers researchers to more rigorous identification of the purpose and strengths of 

each visualization.  In what situations should a certain visualization be used? 

• Provides a platform for studying coordination and its users. 

• Provides an API that is useful for other applications too, such as history keeping 

and collaboration. 

For users and interface designers, Snap: 

• Provides instant user interfaces for databases, without programming. 

• Offers flexibility in data, visualizations, and coordinations, to accommodate 

varying data, tasks, and users. 

• Enables rapid prototyping. 

• Offers advantages of coordinated-visualization interfaces, including improved 

user performance. 

• Enables access to many visualizations, and saved groups shared by others. 

• Standardizes data format. 
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• Provides history keeping, data extraction by drag-and-drop, shopping baskets, 

etc. 

7.4 Limitations and Future Work 

The limitations and potential future extensions to Snap have been discussed in each 

of the major chapters.  The Snap model focuses on common types of coordinations 

discovered through experience.  These are coordinations for selecting, navigating, and 

loading data based on discrete data items.  Example coordinations include brushing and 

linking, overview and detail, drill down, synchronized scrolling, and details on demand. 

Currently, the Snap model is not well suited for attribute-based spatial coordinations of 

continuous regions.  Snap does not yet address other types of coordination such as 

consistency of dynamic data across visualizations, data mining, or collaboration. 

The Snap model could be extended with multiple selection for unions and 

intersections in drill down coordinations, and could be augmented with attribute-based 

tight couplings for spatial coordination and data consistency coordination for editing.  

The Snap user interface could be improved with coordination overview diagrams and 

the Data Compass to reduce user training and enhance usability.  The Snap architecture 

could be extended with additional coordination controls to increase scalability, the 

ability to package distributable coordinated-visualization interfaces after construction, 

and collaboration features.  Further evaluation of Snap is needed to study brushing-and-

linking and drill-down coordinations, and measure benefits of potential Snap user-

interface improvements.  In addition, since Snap places significant design capability in 

the hands of users, guidelines are needed to help them design appropriate coordinated-

visualization interfaces for their data. 
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In the bigger picture, Snap could provide a solution to a rising new problem on the 

web.  Larger databases are increasingly used on the web.  With applications such as e-

commerce and warehousing, more of the web is becoming data driven.  XML is on the 

rise.  Yet, user interfaces on the web are improving slowly.  Designers struggle to use 

frames to provide more advanced coordinated interfaces.  Unfortunately, however, the 

hypertext model is not an appropriate model for coordination.  It is uni-directional and 

embedded in the data.  XML provides some relief, since it separates data from 

presentation, but coordination is missing.  Snap can provide the missing link (pun 

intended).  It provides a solid coordination model, and a method for rapidly constructing 

coordinated interfaces.  Visualizations could be simple html and Javascript pages, or 

more advanced Java applets as Hyperbolic Trees.  Web designers could quickly place 

visualizations into frames and coordinate them.  This would solve the primary 

remaining problem with Snap:  distribution to users. 

7.5 Conclusions 

I believe that Snap-Together Visualization may help information visualization 

succeed more widely.  Snap users can construct the coordinated-visualization interfaces 

they need for their data and tasks, which would otherwise be difficult and time 

consuming to obtain. 

Yet, this research is only the beginning.  Snap opens new possibilities for applied 

information visualization.  It is one step towards ‘crossing the chasm’ [Moo91] – 

towards helping a wider range of users to explore data, make complex decisions, and 

apply their creativity [Shn00]. 
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Appendix A:  
Scenarios 

 

 

Snap-Together Visualization has been used with a variety of data and visualizations 

that demonstrate its breadth and usefulness.  Example applications include:  WestGroup 

case law, Census Bureau statistics, GIS maps, Maryland State Highway Administration 

incident data, personal photo libraries, stock market portfolios, web-site logs, mailing 

address databases, technical-report databases, and hierarchical file structures.  These 

scenarios use a variety of data types, including textual, numeric, geographic, 

hierarchical, and image.  They also employ a variety of visualizations including 

commercial and non-commercial, and Windows-based as well as web-based.  Each 

scenario includes the specification for the coordinated-visualization interface using the 

notation of the Snap model from Chapter 3. 

A.1 Web-Site Logs 

In related work on visualizing web-site logs, Hochheiser [HS99] created scripts to 

parse web-site log files into an Access database.  These files contain data about hits to 

the HCIL web site.  Using Snap, a coordinated-visualization interface (Figure A.1) was 

easily constructed for examining what other web pages refer many readers to pages on 

the HCIL web site.  The three visualizations at the top (outliner, Treemap, Internet 

Explorer) form a site browser for the HCIL web site.  The outliner and Treemap display 

the hierarchical structure of the site.  Selecting a page in either displays that page in IE.  
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The Treemap shows that the HCIL home page, Pad++, and the Visible Human Explorer 

are the most frequently visited pages. 

The two visualizations at the bottom (scatter plot, and IE) display other pages that 

refer readers to the selected page in the site browser.  The plot shows referring pages 

along the X-axis and the number of hits referred (during October 1998) on the Y-axis.  

Selecting the most frequent referrer (110 hits) to the HCIL home page reveals Human 

Factors International in IE.  Exploring reveals other common referrers, including Ben 

Shneiderman’s page, the Department page, and Yahoo’s HCI institutes page.  Selecting 

the Visible Human Explorer page in the outliner shows nearly 1000 hits from the 

National Library of Medicine page.  Selecting to open this page indeed reveals a 

prominent link to the HCIL page.  Naturally, HCIL lab members explored to discover 

referrer patterns to their personal pages. 

The Snap specification for this interface is: 

Visualizations = { (outliner, pages), (Treemap, pages), (IEtop, pages), 
(plot, pageReferrers), (IEbottom, pageReferrers) } 

 
Coordinations = { ((outliner, select), (Treemap, select)),  

((outliner, select), (IEtop, load-PK)),  
((outliner, select), (plot, load-FKpage)),  
((plot, select), (IEbottom, load-PK)) } 
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Figure A.1:  Web-site logs scenario 

 

A.2 Census Data 

Figure A.2 is an interface for exploring Census population data of U.S. states (left) 

and counties (right).  Users can explore from nominal, geographic and numeric 

perspectives.  Selecting Maryland reveals that it ranks very high in terms of income per 

capita and percent college graduates.  Maryland has two counties that have much higher 

percentage of college graduates that the others.  One of these, Montgomery County, has 

the highest per capita income and is clearly located just north of DC. 

This example demonstrates the use of ESRI MapObjects, a component of the 

popular ArcView GIS software. 
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Snap is in use at the Census Bureau to prototype user interfaces for CD-ROM 

products.  Census analysts have also found the capability to relate data between maps 

and plots extremely helpful.  Continued work on Snap at Census has already enabled 

multiple selection for brushing and linking, and connection to intranet-based Oracle 

database servers. 

 

 

Figure A.2:  Census data scenario 

 

The Snap specification for this interface is: 

Visualizations = { (mapstates, states), (plotstates, states), (liststates, states), 
(mapcounties, counties), (plotcounties, counties),  
(listcounties, counties) } 
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Coordinations = { ((mapstates, select), (plotstates, select)),  
((mapstates, select), (liststates, select)),  
((mapcounties, select), (plotcounties, select)),  
((mapcounties, select), (listcounties, select)), 
((mapstates, select), (mapcounties, zoom)), 
((mapstates, select), (plotcounties, load-FKstate)), 
((plotcounties, load-FKstate), (listcounties, load-FKstate)) } 

 

A.3 Photo Libraries 

Snap was used in an HCIL research project on user interfaces for personal digital-

photo libraries [KTS00] to explore many possible designs. The lab has accumulated a 

database of scanned photos of lab members and activities spanning 10 years.  It includes 

annotations such as members’ names, dates, locations, and other information. 

In Figure A.3, a thumbnail visualization shows a collection of a few hundred photos.  

The scatter plot displays a time-line overview of the photos, with date on the X-axis and 

members’ names on the Y.  Uses can see trends and patterns.  For example, vertical 

stripes of dots represent group events, pictures of many members on the same date.  The 

large stripe in the middle is many photos from the 1992 HCIL Open House.  Selecting a 

photo from winter ’89 displays the full-size photo from a ski trip, a list of names of 

members in the photo, and details of photo attributes. 

Other interface variations include locating photos by members’ names or locations, 

selecting a person in a photo to find other pictures of that person, etc. 

The Snap specification for this interface is: 

Visualizations = { (thumbnails, photos), (plot, photos), (IE, photos), 
(listpeople, appearances), (listdetails, photos) } 

 
Coordinations = { ((thumbnails, select), (plot, select)),  

((thumbnails, select), (IE, load-PK)),  
((thumbnails, select), (listpeople, load-FKphoto)),  
((thumbnails, select), (listdetails, load-PK)) } 
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Figure A.3:  Photo libraries scenario 

 

A.4 WestLaw Case-Law Documents 

Significant inspiration for the Snap concept resulted from an HCIL research project 

for WestLaw on visualization of case-law documents.  Snap was used to prototype 

work-benches for legal analysts.  A major task that the analysts perform is to search 

large case-law document databases using keywords, and then examine resulting cases 

for relevance to a current case. 

This user interface in Figure A.4 is for browsing search results.  The visualizations 

at the top of the screen display the hits resulting from a search.  The Snap search 
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window is used to enter search terms (described in Chapter 4).  The hits are displayed 

both textually and graphically by date and search relevance.  Selecting a case displays it 

in the case viewer at the bottom of the screen. 

The case viewer displays the text-intensive details of the case in a manner that 

supports rapid navigation.  A case is composed of a judge’s decision text, which is 

partitioned into sections.  Each section has a WestLaw headnote, containing a 

categorization and annotation.  WestLaw’s existing user interface simply listed out all 

the information in a single web page with many intra-links between sections and 

headnotes.  Since users often refer to headnotes while browsing the decision text, yet 

need to scan the decision as a contiguous text, a two-frame synchronized-scrolling 

approach is more appropriate.  The main list visualization on the right displays the text 

of the case by sections.  The center list displays WestLaw headnotes for each section, 

and synchronizes scrolling with the main text.  Since many cases are long, containing 

10 to 50 headnotes, users can quickly jump to a section by selecting section numbers 

from the overview list on the left.  

This example demonstrates how Snap would be ideal for rapid web-based user 

interface construction.  In fact, based on this prototype, WestLaw did implement this 

case-viewer design in their web site (www.westlaw.com). 

The Snap specification for this interface is: 

Visualizations = { (search, phrases), (listhits, cases), (plot, cases), 
(listoverview, sections), (listheadnotes, sections),  
(listtext, sections) } 

 
Coordinations = { ((search, search), (listhits, load-FKsearch)),  

((listhits, load-FKsearch), (plot, load-FKsearch)),  
((listhits, select), (plot, select)), 
((listhits, select), (listoverview, load-FKcase)),  
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((listoverview, load-FKcase), (listheadnotes, load-FKcase)), 
((listoverview, load-FKcase), (listtext, load-FKcase)) 
((listoverview, select), (listheadnotes, scroll)), 
((listheadnotes, scroll), (listtext, scroll)), } 

 

 

Figure A.4:  Case-law scenario 
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Case 
Overview 
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A.5 Highway Incident Data 

For an HCIL research project on visual aggregation strategies, Fredrikson [FNP99] 

used Snap with Maryland State Highway Administration incident data.  She identified 

temporal, geographical and categorical attributes as ideal candidates for aggregation.  

The drill-down coordination was used to allow users to select aggregates in one 

visualization to display aggregate contents in another visualization.  For example, 

Figure A.5 displays aggregations of highway accidents by day of the week in a bar 

chart.  Selecting Monday, which had the most accidents, reveals the locations of 

individual accidents on the road map of the Baltimore, MD area. 

 

Figure A.5:  Highway incident data scenario 
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While the data set used in this project was not large (~1000 tuples), this technique 

demonstrates how Snap can be used to explore very large-scale relations using drill 

down.  For example, 1,000,000 traffic incidents could be aggregated into 1,000 

aggregates, each with 1,000 incidents.  This could be displayed with two coordinated 

visualizations, an overview of 1,000 points, and a detail view of 1,000.  Furthermore, 

this approach can be repeated by chaining several visualizations, adding an additional 

visualization for each level to multiply by powers of 1,000. 

The Snap specification for this interface is: 

Visualizations = { (barchart, dayAggregates), (map, incidents) } 
 
Coordinations = { ((barchart, select), (map, load-FKday)) } 

 

A.6 Mailing Address Database 

In Figure A.6, Snap is used to explore addresses in the HCIL mailing-list database.  

The names are displayed in a simple table.  The table is coordinated to IE, in which a 

query is loaded that formulates a mailing address as a URL query string to Yahoo Maps.  

Then, selecting a name in the mailing list displays a map of the location of that address.  

This example demonstrates how web services such as Yahoo Maps can be used as snap-

able visualizations. 

The Snap specification for this interface is: 

Visualizations = { (table, addresses), (IE, addressQueryStrings) } 
 
Coordinations = { ((table, select), (IE, load-PK)) } 
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Figure A.6:  Mailing address database scenario 

 

A.7 Files and Folders 

The file-folders scenario in Chapter 1 demonstrates how Java applets such as 

Hyperbolic Trees can be snap-enabled using IE (Figure A.7).  IE is also useful as a 

general-purpose file viewer for images, HTML, PDF and Word documents, etc. 

The Snap specification for this interface is: 

Visualizations = { (plot, folders), (hyperbolic, folders), (table, files),  
(IE, files) } 

 
Coordinations = { ((plot, select), (hyperbolic, select)), 

((plot, select), (table, load-FKfolder)), 
((table, select), (IE, Load-PK)) } 
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Figure A.7:  Files and folders scenario 

 

A.8 Stock Market Portfolios 

In data analysis, it is often useful to view both the graphical visualization as well as 

the detailed numeric spreadsheet.  In Figure A.8, Snap is used to display a financial 

stock portfolio.  Brushing and linking relate the Treemap and spreadsheet. 

The Snap specification for this interface is: 

Visualizations = { (treemap, stocks), (table, stocks) } 
 
Coordinations = { ((treemap, select), (table, select)) } 
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Figure A.8:  Stock market portfolio scenario 

 

A.9 Visible Human Images 

As described in Chapter 3, Snap could also be used in medical and scientific 

domains to relate physical structures in images to other types of information.  The 

mockup in Figure A.9 demonstrates the concept.  While this example has not been 

implemented, it can be done with Snap.  For example, html image maps in IE have been 

used with Snap.  An image map of the U.S. was used prior to the use of ArcView 
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(Figure A.10).  Another approach might be to use a volume visualization tool that 

supports the selection of structural objects. 

The Snap specification for this interface would be: 

Visualizations = { (volumeviz, structures), (outliner, structures) } 
 
Coordinations = { ((volumeviz, select), (outliner, select)) } 

 

 

Figure A.9:  Visible Human images scenario 

 

 

Figure A.10: Image map in IE 
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A.10 Summary 

These scenarios also demonstrate the serious need that Snap fulfills.  Without the 

use of Snap, scenarios such as the web logs example simply could not be readily 

accomplished.  They would require significant custom programming, or the difficult 

and tedious use of uncoordinated displays. 

These examples demonstrate how Snap has already been highly applicable and 

useful in many projects.  It has been useful to both researchers and practitioners, and 

has already had an impact at several organizations including HCIL, the Census Bureau, 

Spotfire and WestLaw. 
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Appendix B:  
Review of Coordinated-Visualization 
Systems 
 

 

Coordinated visualization systems have become an important and diverse topic.  

Many such systems have been built.  Most of these systems are data flexible (defined in 

Chapter 2).  That is, typically they can be used to visualize different data sets, but are 

usually fixed in terms of the visualizations and coordinations in their user interface.  

This Appendix reviews many of these systems from the field.  As in the rest of this 

dissertation, the focus is on coordinations for information exploration. 

A simple taxonomy is used to lay out the space of these systems [NS97], loosely 

based on the conceptual model of visualization coordination described in Chapter 3.  

Visualizations have two basic classes of actions: 

• Select:  Users can select and highlight data items in the visualization to express 

interest in them, or possibly to initiate other forms of manipulation on them. 

• Navigate:  Users can navigate the visualization to focus on data items or to 

display other data items (e.g. scroll, pan, zoom, slice, rotate, ascend/descend 

tree, follow link, open file, etc.).  For the purposes of this taxonomy, navigate 

also includes the load action to load other data into a visualization as a form of 

navigation through the larger data context. 
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Coordinating a pair of visualizations tightly couples one of these actions in the one 

visualization to another action in the other visualization.  The taxonomy classifies 

coordinations by the three possible combinations of actions (Figure B.1): 

1. Select ↔  select 

2. Navigate ↔  navigate 

3. Select ↔  navigate (which is equivalent to navigate ↔  select due to bi-

directionality) 

 

Select ↔  Select Select ↔  NavigateNavigate ↔  Navigate

 

Figure B.1:  A taxonomy of coordinations 

 

B.1 Select ↔  Select 

This coordination tightly couples selecting items in one visualization to selecting 

items in another visualization, to help users correlate equivalent or related items.  When 

users select (highlight, paint, brush) an item (or set of items) in one visualization, the 

system immediately highlights the equivalent item (or set), representing the same 

underlying data elements, in the other visualization.   

Many exploratory data analysis systems use this coordination to visualize high-

dimensional data point sets with multiple coordinated plots.  Common examples are 

Datadesk [Vel88], SAS Insight, JMP, EDV [EW95], Spotfire [AW95], XGobi [BCS96], 
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XmdvTool [WA95].  Invention of this brushing-and-linking concept is generally 

credited to Prim-9 [FFT74] or Newton [New78].  [Mon89] introduced brushing to GIS 

by brushing between plots and geographic choropleth maps.  XmdvTool provides the 

capability to brush regions in attribute space as well as individual data items.  For 

example, in Figure B.2 an n-dimensional region is selected in both the plot matrix and 

parallel-coordinates graph. 

 

 

Figure B.2:  XmdvTool 

 

For examples with other types of data, the Navigational View Builder [MFH95] 

(Figure B.3) brushes nodes in hierarchical information, linking Treemaps (emphasizing 

numerical and categorical attributes), ConeTrees (emphasizing structure), and outliners 

(emphasizing node names).  With Lilac [Bro91], a two-window document editor, 

selecting text in the WYSIWYG page window also selects the corresponding text in the 

source text window (similar to HTML code). 
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Figure B.3:  Navigational View Builder 

 

An interesting variation is the Attribute Explorer [STD95], which uses additive 

encoding of multiple brushes (Figure B.4).  It displays multi-dimensional data in a 

series of 1-dimensional histograms, and users can select a range in each histogram.  

Then, data points are color coded by the number of attribute selections they are 

contained in.  Points that satisfy more selections are lighter, fewer selections are darker. 

 

 

Figure B.4:  Attribute Explorer 
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Visage VQE [DRK97] extends brushing to multiple relations.  Visualizations 

containing joins of relations can be brushed if they share a common relation anywhere 

in their join paths.  An early prototype of LinkKit [Nor98] demonstrates brushing across 

many-to-many joins for exploring authors, publications, and other references (Figure 

B.5). 

 

 

Figure B.5:  LinkKit prototype in Elastic Windows 
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B.2 Navigate ↔  Navigate 

This coordination tightly couples navigation in one visualization to simultaneous 

navigation in another visualization.  This maintains synchronization of visualizations 

while navigating (e.g. scrolling, panning, zooming, slicing, traversing, etc.) through 

correlated information spaces (e.g. Figure B.6) 
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Figure B.6:  Synchronized scrolling 

 

Synchronized scrolling tightly couples the scroll bars of two visualizations.  

WordPerfect displays a document’s formatting codes in a separate frame adjacent to the 

main text that with synchronized scrolling.  This approach avoids losing the relationship 

between representations and saves users from tedious repetition of scrolling actions in 

each frame.  With Logos Bible Software, users can simultaneously scroll through 

different Bible translations, commentaries, and study guides, which all share a common 

ordered hierarchical structure of book, chapter, and verse.  SeeDiff [BE96] synchronizes 

scrolling through two version of a source code file for analyzing changes (Figure B.7). 
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DEVise [LRB97] generalizes this synchronized navigation strategy to 2D, allowing 

users to synchronously pan and zoom multiple 2D plots with common X and Y axes.  

The Neighborhood Viewer [CSP97] (Figure B.8) extends this to 3D slicing by 

synchronously panning correlated cross-section, CT, and MRI images through the 

human body.  Chi et al. [CBR97] (Figure B.9) extends synchronized navigation to 

general 3D.  It arranges many small 3D visualizations in a spreadsheet grid and 

synchronizes their rotation, zooming, etc. 

 

 

Figure B.7:  SeeDiff 
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Figure B.8:  Neighborhood Viewer 

 

 

Figure B.9:  Spreadsheet Visualization 
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B.3 Select ↔  Navigate 

This coordination tightly couples selecting items in one visualization to navigating 

in another visualization, and vice versa (i.e. navigate to select).  Users can select items 

from overviews to navigate to corresponding detailed information in separate 

visualizations.  Likewise, navigating the detailed visualization indicates the 

corresponding selection in the contextual overview (Figure B.10). 

 

 Scroll Bar Table of Contents Index List  

Figure B.10: Overview and detail 

 

Overviews provide a global map of information, and detail visualizations provide 

detailed information about a small portion.  Coordinating the visualizations indicates the 

location of and provides a mechanism for navigating the detail from within the context 

of the overview.  This is advantageous over detail-only browsers since overviews 

indicate what information is available, provide context for details, guide browsing, 

promote exploration, and help avoid getting lost.  This strategy contrasts with 

distortion-oriented techniques [LA94], which attempt to show details within the context 
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of the overview in a single visualization by distorting the view.  An important metric is 

the zoom factor between the overview selection and detail.  Larger zoom factors allow 

for more information.  While zoom factors for distortion techniques are typically 

limited to 5 or less, coordinated visualizations can reach zoom factors of 20 for attribute 

spaces [PCH92] and 1000 for data aggregation strategies.  Also, several of these 

coordinations can be chained together using intermediate visualizations [PCS95] to 

multiply zoom factors. 

With the Navigational View Builder [MFH95] (Figure B.3), and other web site 

visualization tools, users can select any node in a visualization of a large site to display 

that web page in a separate browser window.  This strategy has become commonplace 

in user interface design.  It is used in many standard tools such as Microsoft Word and 

Windows Explorer.  It is also used with frames on web pages.  Simultaneous menus 

[HKV00] enables users to select from multiple overviews to display results in a single 

detail visualization based on all the selections (Figure B.11). 

 

 

Figure B.11: Simultaneous Menus 
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A variant of this approach shows details of selections in a new popup window 

instead of a given static window, as in the FilmFinder [AS94] (Figure B.12).  Selecting 

a dot on a scatter plot displays that record’s fields, including pictures.  However, this 

requires additional clicks to dismiss the popup each time or move it aside. 

 

 

Figure B.12: FilmFinder 

 

The select-to-navigate coordination can be used to drill down through layers of a 

database, with separate visualizations for each layer.  CASCADE [SMH96] (Figure 

B.13) provides four layers of coordinated visualizations for zooming through 4 different 

levels of scale within a large document database:  the Docuverse level (collection of up 

to 5000 documents), Webview (up to 500 documents), Landmarks (within a single 

document), and Preview (individual item in a document, such as a hyperlink). 
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Figure B.13: CASCADE 

 

For attribute spaces, dragging or resizing a field-of-view indicator (selection) in the 

overview is tightly coupled to pan or zoom (navigation) the detail visualization, and 

vice versa.  Scroll bars, albeit poor overviews of their associated main window, are a 

simple 1D example.  The Information Mural [JS95] (Figure B.14), SeeSoft [BE96] 

(Figure B.15), ValueBars [Chi92], and others [Eic94] provide highly reduced images of 

large documents or software code, using color coding and anti-aliasing algorithms, for 

navigating 1D document windows with fields-of-view.   

The “cursor” link in DEVise [LRB97] links a 2D field-of-view in an overview plot 

to the panning control of the axes in a detail plot.  Similar 2D approaches are used in 

Pad++ portals [BH94] and in PDQ Trees [KPS97] (Figure B.16) for hierarchies laid out 

on a 2D surface.  Plaisant et al. [PCS95] developed a formal notation for specifying this 

coordination for browsing large 2D images that is replicated in many digital imaging 

packages such as Adobe Photoshop. 
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Figure B.14: Information Mural 

 

 

Figure B.15: SeeSoft 
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Figure B.16: PDQ Trees 

 

For a 3D volumetric image space, with the Visible Human Explorer [NSP96] users 

can rapidly navigate each orthogonal 2D cross-section visualization through the human 

body by dragging the corresponding cut lines in the other visualizations, and receive 

continuous feedback of contents (Figure B.17). 
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Figure B.17: Visible Human Explorer 

 

An extension to this approach is to use one visualization to keep a history of 

navigation in other visualizations.  With select-to-navigate coordination, users can 

revisit previous states.  PadPrints [HRH98] (Figure B.18) and the Graphical History 

Browser [AS95] both maintain iconic node-link diagrams of visited web pages for a 

web browser.  Utting and Yankelovich [UY89] review several such approaches for 
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hypertext navigation.  They extend their Intermedia system to include a map of 

destinations that can be reached from the current page as well, hence providing a 

selectable visualization of both history and potential future. 

 

 

Figure B.18: PadPrints 

 

B.4 Summary 

Many coordinated-visualization interfaces have been developed, and have proven to 

be very useful and effective.  Yet, these are only a small number in comparison to the 

myriad different combinations of visualizations and coordinations that are needed for so 

many unique users, data, and tasks.  Clearly, these many examples serve to point out the 

need for Snap-Together Visualization. 
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Appendix C:  
User Study Materials 

 

 

C.1 Evaluation of Coordination Construction 

C.1.1 Background Survey 

1. Occupation (position title) 
2. Census data experience 
3. Computer usage experience (frequency, applications) 
4. Relational database concepts  (tables, attributes, rows, relationships, keys) 
5. Microsoft Access experience, SQL experience (designing DBs, writing queries) 
6. Visualization tools experience 
7. Programming experience (components, databases, user interfaces, web design) 
 

C.1.2 Verbal Post-Survey 

1. Other ideas for browsing this data? 
2. Trouble spots in using Snap? 
3. Suggestions for improving the Snap user interface? 
 
 

C.2 Evaluation of Coordination Operation 

C.2.1 Data 

The information presented to the user in the detail window consisted of the 

following statistics for 47 states.  The three missing states were Minnesota, Mississippi, 

and Missouri. 

State: Maryland 
Population: 4781468 
Families: 1256327 
Households: 1749342 
Male %: 48.5% 
Female %: 51.5% 
Urban %: 81.3% 
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Average Age: 33.1 
HS Diploma %: 78.4% 
College Degree %: 31.7% 
English Speaking %: 84.3% 
Average Commute Time: 33 
Carpool Commute %: 15.2% 
Public Transportation %: 8.1% 
Per Capita Income: 17730 
Median Family Income: 45034 
Median Household Income: 39386 
No Income  Households %: 15.3% 
Average Persons per Family: 3.81 
Average Workers per Family: 1.88 
Housing Units: 1891917 
Vacancy %: 8.2% 
Average Bedrooms: 2.73 
Average Persons per Unit: 2.73 
Median Value: 115500 
Median Mortgage: 919 
Median Rent: 548 
Rent % Household Income: 25.4 
Flag Description: The Maryland flag contains the family crest of the 
Calvert and Crossland families. Maryland was founded as an English colony in 
1634 by Cecil Calvert, the second Lord Baltimore. The black and Gold designs 
belong to the Calvert family. The red and white design belongs to the Crossland 
family. 

 
C.2.2 Task Sets 

Practice Tasks:   

What is the Population of Georgia? 
Does the information include statistics about the state of Wyoming? 
Which of the first four states has the highest xxxx? 

Task Group #1: 

Question Answer 
1. What is the Population of Tennessee? 4,877,185 
2. Does the information include statistics about the state of Ohio? Yes 
3. Which of the following states has higher Median Family Income: 
California or Washington? 

CA 

4. Which state has Average Commute Time of 31? NJ 
5. How many states in the list begin with the letter ‘M’? 5 
6. Which of the following 5 states has the highest Median Household 
Income:  Florida, Rhode Island, Louisiana, Alaska, or New Jersey? 

Alaska 
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7. Does the information include statistics about the state of Minnesota? No 
8. Which state has the highest HS Diploma %? Alaska 
9. What is the Population of the 6th state from the bottom of the list? VT 

562,758 
 

Task Group #2: 

Question Answer 
1. What is the Population of Texas? 16,986,510 
2. Does the information include statistics about the state of Oklahoma? Yes 
3. Which of the following states has higher Median Family Income:  
Colorado or West Virginia? 

CO 

4. Which state has Average Commute Time of 32? NM 
5. How many states in the list begin with the word ‘New’? 4 
6. Which of the following 5 states has the highest Median Household 
Income:  Georgia, South Carolina, Maine, Arizona, or New Mexico? 

GA 

7. Does the information include statistics about the state of 
Mississippi? 

No 

8. Which state has the highest College Degree %? Mass 
9. What is the Population of the 5th state from the bottom of the list? VA 

6,187,358 
 

Task Group #3: 

Question Answer 
1. What is the Population of Utah? 1,722,850 
2. Does the information include statistics about the state of Oregon? Yes 
3. Which of the following states has higher Median Family Income:  
Connecticut or Wisconsin? 

Conn 

4. Which state has Average Commute Time of 35? NY 
5. How many states in the list begin with the letter ‘O’? 3 
6. Which of the following 5 states has the highest Median Household 
Income:  Hawaii, South Dakota, Maryland, Arkansas, or New York? 

MD 

7. Does the information include statistics about the state of Missouri? No 
8. Which state has the highest English Speaking %? WV 
9. What is the Population of the 4th state from the bottom of the list? Wash 

4,866,692 
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C.2.3 Questionnaire for User Interface Satisfaction 

User Interface #1: 
Comprehensibility:  confusing             clear 
   1 2 3 4 5 6 7 8 9 
Ease of Use:  difficult              easy 
   1 2 3 4 5 6 7 8 9 
Speed of Use:  slow                fast 
   1 2 3 4 5 6 7 8 9 
Overall Satisfaction: terrible       wonderful 
   1 2 3 4 5 6 7 8 9 
 
User Interface #2: 
Comprehensibility:  confusing             clear 
   1 2 3 4 5 6 7 8 9 
Ease of Use:  difficult              easy 
   1 2 3 4 5 6 7 8 9 
Speed of Use:  slow                fast 
   1 2 3 4 5 6 7 8 9 
Overall Satisfaction: terrible       wonderful 
   1 2 3 4 5 6 7 8 9 
 
User Interface #3: 
Comprehensibility:  confusing             clear 
   1 2 3 4 5 6 7 8 9 
Ease of Use:  difficult              easy 
   1 2 3 4 5 6 7 8 9 
Speed of Use:  slow                fast 
   1 2 3 4 5 6 7 8 9 
Overall Satisfaction: terrible       wonderful 
   1 2 3 4 5 6 7 8 9 
 
Comments: 

 

C.2.4 Statistical Results 

Effect F value p 
User Interface F(2,442) = 86.2 p < .001 
Task F(8,442) = 377 p < .001 
UI x Task Interaction F(16,442) = 20.9 p < .001 

Figure C.1:  Overall 3x9 ANOVA statistics for user performance 
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 Task 
 1 2 3 4 5 6 7 8 9 

Detail-Only 9.2 
3.0 

8.9 
3.0 

16.6 
5.3 

12.5 
4.7 

10.2 
5.1 

21.2 
5.0 

79.9 
33.2 

86.0 
23.3 

172 
32.5 

No-
Coordination 

2.3 
2.3 

2.4 
0.9 

3.2 
2.4 

9.9 
2.7 

10.5 
4.5 

22.2 
6.0 

77.9 
34.7 

90.1 
40.0 

174 
41.5 

Coordination 1.7 
0.9 

2.5 
1.0 

3.4 
1.9 

5.7 
5.8 

2.6 
0.8 

13.9 
2.3 

39.2 
12.4 

41.8 
13.9 

86.2 
20.7 

3x1 ANOVA 
F(2,34),   p< 

92.9 
.001 

89.5 
.001 

86.9 
.001 

12.5 
.001 

29.4 
.001 

23.7 
.001 

12.2 
.001 

24.9 
.001 

47.7 
.001 

Figure C.2:  Mean and standard deviation of user performance times (in seconds) 

 

Figure C.2 shows the significance levels of the one-way ANOVAs for the user 

interface factor for each task.  It also shows results of the pair-wise t-test comparisons 

of user interface treatments within each task.  The shaded cells are significantly faster 

than the white cells within each task at the p<.005 level.  The details of these pair-wise 

comparisons are shown in Figure C.3, the output of the analysis using the SPSS 

statistical software package.  The user-interface treatments and task treatments are 

coded as follows: 

User-Interface Treatments 
1 Detail-Only 
2 No-Coordination 
3 Coordination 

 
Task Treatments 

1 Coverage-yes 
2 Coverage-no 
3 Overview patterns 
4 Visual lookup 
5 Nominal lookup 
6 Compare-2 
7 Compare-5 
8 Search 
9 Scan 
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6.894* .633 .000 5.059 8.730
7.544* .654 .000 5.649 9.440

-6.894* .633 .000 -8.730 -5.059
.650 .548 .252 -.938 2.238

-7.544* .654 .000 -9.440 -5.649
-.650 .548 .252 -2.238 .938
6.472* .710 .000 4.413 8.531
6.372* .570 .000 4.720 8.024

-6.472* .710 .000 -8.531 -4.413
-.100 .304 .746 -.982 .782

-6.372* .570 .000 -8.024 -4.720
.100 .304 .746 -.782 .982

13.344* 1.355 .000 9.419 17.270
13.133* 1.250 .000 9.511 16.755

-13.344* 1.355 .000 -17.270 -9.419
-.211 .798 .795 -2.524 2.102

-13.133* 1.250 .000 -16.755 -9.511
.211 .798 .795 -2.102 2.524

2.639 1.310 .060 -1.157 6.435
6.783* 1.583 .000 2.197 11.370

-2.639 1.310 .060 -6.435 1.157
4.144* 1.187 .003 .703 7.586

-6.783* 1.583 .000 -11.370 -2.197
-4.144* 1.187 .003 -7.586 -.703
-.267 1.318 .842 -4.087 3.554
7.628* 1.125 .000 4.367 10.889
.267 1.318 .842 -3.554 4.087

7.894* 1.045 .000 4.867 10.922
-7.628* 1.125 .000 -10.889 -4.367
-7.894* 1.045 .000 -10.922 -4.867
-.983 1.183 .417 -4.411 2.444
7.250* 1.177 .000 3.838 10.662
.983 1.183 .417 -2.444 4.411

8.233* 1.527 .000 3.807 12.660
-7.250* 1.177 .000 -10.662 -3.838
-8.233* 1.527 .000 -12.660 -3.807
2.000 11.242 .861 -30.581 34.581

40.778* 8.098 .000 17.307 64.249
-2.000 11.242 .861 -34.581 30.581
38.778* 8.270 .000 14.809 62.747

-40.778* 8.098 .000 -64.249 -17.307
-38.778* 8.270 .000 -62.747 -14.809
-4.111 8.470 .634 -28.660 20.437
44.167* 4.483 .000 31.173 57.160
4.111 8.470 .634 -20.437 28.660

48.278* 8.993 .000 22.213 74.343
-44.167* 4.483 .000 -57.160 -31.173
-48.278* 8.993 .000 -74.343 -22.213

-.722 10.914 .948 -32.354 30.909
86.722* 10.422 .000 56.517 116.928

.722 10.914 .948 -30.909 32.354
87.444* 9.506 .000 59.894 114.995

-86.722* 10.422 .000 -116.928 -56.517
-87.444* 9.506 .000 -114.995 -59.894

UI (J)
2
3
1
3
1
2
2
3
1
3
1
2
2
3
1
3
1
2
2
3
1
3
1
2
2
3
1
3
1
2
2
3
1
3
1
2
2
3
1
3
1
2
2
3
1
3
1
2
2
3
1
3
1
2

UI (I)
1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

Task
Task 1

Task 2

Task 3

Task 4

Task 5

Task 6

Task 7

Task 8

Task 9

Mean
Difference

(I-J) Std. Error Sig.a Lower Bound Upper Bound

99% Confidence Interval for
Differencea

Based on estimated marginal means
The mean difference is significant at the .01 level.*. 

Adjustment for multiple comparisons: Least Significant Diff (equivalent to no adjustments).a.  

Figure C.3:  Pair-wise t-test comparisons of user interfaces on user performance 
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Effect F value p 
User Interface F(2,187) = 70.2 p < .001 
Satisfaction Category F(3,187) = 9.2 p < .001 
UI x Category F(6,187) = 11.1 p < .001 

Figure C.4:  Overall 3x4 ANOVA statistics for subjective satisfaction 

 
 Satisfaction Category 
 Comprehen-

sibility Ease of Use Speed of 
Use Overall 

Detail-Only 6.4 
2.4 

4.1 
2.4 

2.9 
1.5 

3.3 
1.4 

No-
Coordination 

6.6 
2.2 

5.1 
1.8 

4.8 
1.7 

4.8 
1.7 

Coordination 8.3 
1.2 

8.1 
0.9 

8.1 
1.1 

7.9 
1.1 

3x1 ANOVA 
F(2,34),   p< 

9.4 
.001 

33.6 
.001 

83.4 
.001 

103.5 
.001 

Figure C.5:  Mean and standard deviation of subjective satisfaction ratings 

 

-.111 .511 .830 -1.591 1.369
-1.833* .459 .001 -3.164 -.503

.111 .511 .830 -1.369 1.591
-1.722* .449 .001 -3.023 -.422
1.833* .459 .001 .503 3.164
1.722* .449 .001 .422 3.023

-1.000 .443 .037 -2.283 .283
-3.944* .591 .000 -5.658 -2.231
1.000 .443 .037 -.283 2.283

-2.944* .454 .000 -4.259 -1.630
3.944* .591 .000 2.231 5.658
2.944* .454 .000 1.630 4.259

-1.833* .406 .000 -3.011 -.656
-5.167* .398 .000 -6.321 -4.013
1.833* .406 .000 .656 3.011

-3.333* .412 .000 -4.528 -2.139
5.167* .398 .000 4.013 6.321
3.333* .412 .000 2.139 4.528

-1.556* .283 .000 -2.375 -.736
-4.611* .354 .000 -5.636 -3.586
1.556* .283 .000 .736 2.375

-3.056* .338 .000 -4.035 -2.076
4.611* .354 .000 3.586 5.636
3.056* .338 .000 2.076 4.035

UI (J)
2
3
1
3
1
2
2
3
1
3
1
2
2
3
1
3
1
2
2
3
1
3
1
2

UI (I)
1

2

3

1

2

3

1

2

3

1

2

3

Category
COMP

EASE

SPEED

OVERALL

Mean
Difference

(I-J) Std. Error Sig.a Lower Bound Upper Bound

99% Confidence Interval for
Differencea

Based on estimated marginal means
The mean difference is significant at the .01 level.*. 

Adjustment for multiple comparisons: Least Significant Diff (equivalent to no adjustments).a.  

Figure C.6:  Pair-wise t-test comparisons of user interfaces on subjective satisfaction 
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