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In the field of information visualization, researchers and developers have created
many types of visualizations, or visual depictions of information. User interface
designers often coordinate multiple visualizations, taking advantage of the strengths of
each, to enable users to rapidly explore complex information. However, the
combination of visualizations and coordinations needed in any given situation depends
heavily on the data, tasks, and users. Consequently, the number of needed
combinations explodes, and implementation becomes intractable.

Snap-Together Visuaization (Snap) is a conceptual model, user interface, software
architecture, and implemented system that enables users to rapidly and dynamically

construct coordinated-visualization interfaces, customized for their data, without



programming. Usersload datainto desired visualizations, then create coordinations
between them, such as brushing and linking, overview and detail, and drill down.

This dissertation presents four primary contributions. First, Snap formalizes a
conceptual model of visualization coordination that is based on the relational data
model. Visualizations display relations, and coordinations tightly couple user
interaction across relationa joins.

Second, Snap’s user interface enables the construction of coordinated-visualization
interfaces without programming. Data users can dynamically mix and match
visualizations and coordinations while exploring. Data disseminators can distribute
appropriate interfaces with their data. Interface designers can rapidly prototype many
alternatives.

Third, Snap’s software architecture enables flexibility in data, visuaizations, and
coordinations. Visualization developers can easily snap-enable their independent
visualizations using a simple API, allowing users to coordinate them with many other
visualizations.

Fourth, empirical studies of Snap reveal benefits, cognitive issues, and usability
concerns. Six data-savvy users successfully, enthusiastically, and rapidly designed
powerful coordinated-visualization interfaces of their own. In astudy with 18 subjects,
an overview-and-detail coordination reliably improved user performance by 30-80%
over detail-only and uncoordinated interfaces for most tasks.

Snap has proven useful in avariety of domains, including census statistics and
geography, digital photo libraries, case-law documents, web-site logs, and traffic

incident data.
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Chapter 1.

| ntroduction

1.1 Problem

In the field of information visualization, researchers and developers have created

many types of visualizations, or visual depictions of information [CMS99]. For

example, to display hierarchical information, one can choose from outliners, Hyperbolic

Trees[LR96], Treemaps [Shn92], fish-eye views [Fur86], etc. Each visualization has

different strengths. For example, Hyperbolic Trees may be appropriate for deep

unbalanced hierarchies, whereas Treemaps are helpful when nodes have numerical

attributes (see Figure 1.1).
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Figure 1.1:

Hierarchy visualizations. Outliner, Hyperbolic Tree, Treemap

User interface designers often coordinate multiple visualizations, taking advantage

of the strengths of each, to create even more powerful information exploration

1



environments [Shn98] [BWKO0O]. Thistechnique is particularly potent when the
information is sufficiently complex to require different types of visualizations for
different aspectsor layers. A smple example interface is Microsoft’s Windows
Explorer (Figure 1.2), which employs 3 visualizations to browse hierarchical file
systems. an outliner visualization of the folders, atabular visualization of the filesin

the selected folder, and a textual visualization of the details of the selected file including

aminiature quick-view.
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Figure 1.2: Windows Explorer, three coordinated visualizations

Visualizations can be coordinated in a variety of ways. In information-exploration
interfaces, some common types of visualization coordinations [NS97] are:
Brushing and linking: An exploratory data analysis (EDA) technique used
when displaying a set of data items in multiple visualizations. When users select

items in one visualization, those items are automatically highlighted in al the



visualizations. A common example is brushing scatter plots[BC87]. For

example, Figure 1.3 shows census data in Spotfire [AW95], a commercial data
analysis package. Selecting the states with low percentages of high school and
college graduates in the left plot reveals that those states also have low income

and high unemployment levelsin the plot on the right.

©)| Spotfire Pro - Imported ODBC Data [States) M= E3
File Edit “iew Optiohs Tool: Window Help
O] Scatter Plot M= E || ©Scatter Plot M= E3
% College Grad  + | % Unemployed |
'i 33 . . D . J
8.2
° O m
. H
. 5.9 D . . .
24
5E
21 J - [
= "
3
12
B4 67 70 73 76 79 82 45 | 16000 13000 52000 55000 53000
% Highschool Grad_ ¥ | Income per Capita ¥ |
[[B2.123] |51 out of 51 records visible [100.00 %], 3 marked [ & 2

Figure 1.3: Brushing and linking in Spotfire

Overview and detail: Selecting anitem in the overview visuaization navigates
the detail visualization to the corresponding details. Items are represented
visually smaller in the overview. This provides context and allows direct access
to details. For example, web designers often add a table-of-contents frame to a
large document. Users can then select a section title to scroll the main frame
immediately to that section. In Figure 1.4, the user has selected the “Financial
Information” section of the Graduate Catalog.
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Figure 1.4: Overview and detail with web frames

Drill down: Allows usersto navigate down successive layers of a hierarchical
database. Selecting a parent item in one visualization loads children items into
another visualization, as in Windows Explorer. This enables exploring very
large-scale data, by displaying aggregates in one visualization and the contents
of the selected aggregate in another visualization [FNP99].

Synchronized scrolling: Users can conveniently scroll through multiple
corresponding data sets. Examples include alternate trandations, music, and
information with summaries or annotations. In Figure 1.5, users of Logos Bible
Software [Log93] can simultaneoudly scroll through multiple bible trandations
and commentaries by chapter and verse. This speeds users tasks such as

making comparisons or examining from multiple points of view.
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Figure 1.5: Synchronized scrolling with Logos Bible Software

A coordinated-visualization user interface is defined as a set of visualizations and a
set of coordinations between the visualizations. In the literature, the phrase ‘multiple
views' is often used instead but sometimes refers strictly to the brushing-and-linking
coordination. Hence, this dissertation uses ‘ coordinated visualizations' to refer to the
more general definition and to reflect the focus of this research on visualization.

Many coordinated-visualization interfaces have been implemented. However, two
confounding problems arise. First, the set of visualizations and coordinations needed in
any given situation depends heavily on:

data: different data sets have different features and structure.

tasks: what does the user want to accomplish with the data?

users. thereistremendous variation between usersin individual user
preferences, experience levels, etc.

For example, while Windows Explorer is helpful for some users and tasks, system

administrators may need alternate visualizations. Replacing the outliner visualization of



folders with a scatter plot of the folders would enable administrators to quickly spot

large old folders for archival. In Figure 1.6, the scatterplot and hyperbolic tree display

the folders, enabling users to examine size and date trends as well as hierarchical

structure. Selecting afolder displaysitsfilesin the tabular visualization. Selecting a

file displaysits contents in the file viewer.
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Figure 1.6: A coordinated-visualization interface for browsing folders and files.

Secondly, the implemented visualizations are typically not programmed to

coordinate together. Hence, these aternate combinations usually require custom

development. Researchers stumble over this problem often, and must constantly re-




implement coordinations between new unforeseen combinations of visualizations.
Unfortunately, thisis a poor solution to the problem. Even with good component-based
design, these hard-coded combinations are inflexible and difficult to construct.

Clearly, the number of needed combinations of visualizations and coordinations
explodes exponentially, and implementation becomes intractable. Hence, the control of
the choice of coordinated-visualization interface needs to be in the hands of the users.

A lightweight mechanism is needed to alow end-users to easily “snap” individual
visualizations together into custom combinations. This must not be a toolkit that

requires programming, but a user interface.

1.2 Snap-Together Visualization

Snap-Together Visuaization (Snap) [NS00a] is a conceptual model, user interface,
architecture, and implemented system developed to meet these needs. Snap enables
data users to rapidly and dynamically mix and match visualizations and coordinations to
construct custom exploration interfaces without programming. Snap is flexible in data,
visualizations and coordinations. Snap focuses on (@) interconnecting the visualization
tools created by researchers and developersin the field to (b) construct coordinated-
visualization interfaces for rapid exploration and navigation of data and relationships.

Snap is based on the relational data model. To explore a database, users first
display relations (tables or query results) in visualizations. Then they construct
coordinations by specifying actions to tightly couple between the visualizations.
Visualization developers can easily make their independent visualizations snap-able

using asimple API.



1.2.1 Scenario

This scenario demonstrates step-by-step how Snap is used to construct the file-
folder browser for system administrators as described in the example in the introduction
(see [NS99] video for dynamic interaction). First, the database containing the folder
and file information is opened with Snap. The Snap Menu window (Figure 1.7)
displays the list of tables and queries in the database (left), aswell asalist of available
visualization types (right). To view the foldersin a Spotfire scatter plot, the table
containing folder information is dragged from the list and dropped onto the scatter plot
button. The plot opens, loads, and displays the folders. Choosing ‘creation date' for the
X-axisand ‘size’ for the Y -axis establishes the desired visualization. Now it is easy to
spot the large old folders in the upper left of the plot. Of course, users need to see the
files contained in the folders. Dragging the query that extracts only the files within a
given folder, and dropping it onto the tabular visualization button opens the new

visualization.

Each visualization window is adorned with a snap button [288e5 . To coordinate
the visualizations, the snap button is dragged from the plot to the tabular visualization
(Figure 1.8). The Snap Specification dialog (Figure 1.9) then displays the available
actions in each visualization that can be tightly coupled. Choosing the ‘select’ actionin
the plot and the ‘load’ action in the tabular visualization specifies that selecting a folder
in the plot should load and display the filesin that folder into the tabular visualization.

Now, construction of the coordinated-visualization interface is complete (Figure
1.10). Users can browse by simply selecting folders in the plot and viewing contents in

the tabular visualization, like Windows Explorer.



Additional visualizations could be added to further improve the interface (asin
Figure 1.6). For example, if the context of the folders in the hierarchical structureis
important, then users might load the folders into Inxight’s Hyperbolic Tree. They could
coordinate this to the scatter plot so that selecting a folder in either visualization would
also select and highlight it in the other. To examine the contents of many files, users

could coordinate a file viewer onto the tabular visualization.
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Figure 1.7: Opening visualizations
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Figure 1.10: Operating the constructed interface
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1.3 Research Questions

In providing Snap as a solution to the stated problem, this research must provide
answers to several important questions.

First, the concept of visualization coordination is not well understood. Coordination
has been only loosely viewed as aform of interaction. There has been no categorization
of types of coordination, nor formal theory of coordination. Already the above
definition of a coordinated-visualization interface is a significant advance in
understanding the concept. How can visualization coordination be formally modeled?

Second, how can end-users construct their own coordinated-visualization interfaces
without programming? What user interface will enable them to accomplish this?

Third, how can the software architecture provide such flexibility, and enable the use
of independent visualization tools developed by others? The effort required by
visualization developersto enable their tools must be minimized, while maximizing the
functionality available to users.

Finally, empirical evaluation is needed to understand users ability to construct and
operate coordinated visualizations. Do users understand coordination between
visualizations? Can they construct their own coordinated-visualization environments to
support their tasks? Canthey useit to their benefit? If there is a benefit, why and what
are the critical aspects of the coordinated visualizations that causes improvement? In
genera, user interface design requires significant expertise, but Snap puts some design
capability in the hands of users. Can users essentially design their own user interfaces

for information exploration by snapping together appropriate visualizations?
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1.4 Scope

Snap focuses on coordinations between visualizations for information exploration.
Snap does not address other classes of tasks such as data input or editing.

Snap focuses on the common types of data and visualizations that are typically
encountered in the field of information visualization, such as databases, file directories,
statistical tables, etc. It isless concerned with scientific visualization applications
which are often more oriented towards image processing.

Snap focuses on common coordinations for information exploration. There are
other kinds of coordination for data manipulation consistency, dynamic data,

collaboration, etc.

1.5 Content

Chapter 2 reviews related literature, and provides a framework of the space that
Snap fitswithin. Chapter 3 describes Snap’s foundational model of visualization
coordination. Chapter 4 describes Snap’s user interface for coordination construction.
Chapter 5 describes Snap’ s architecture that enables independent visualization tools.
Chapter 6 details two empirical studies of coordination construction and operation.
Chapter 7 concludes with benefits, limitations, contributions, and future work.
Appendix A demonstrates Snap with several additional scenarios to show its breadth
and usefulness. The file-folders scenario presented above (Figure 1.6) is used

throughout the dissertation for examples.
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Chapter 2:
Related Work

2.1 Conceptual Models of Coordination

Previous work on multiple window strategies [Shn98], [NWS86], [ SSS86],
[WHS87], [CPF84], [Wo0084] have loosely characterized afew examples of coordination.
In statistical graphics, the brushing-and-linking coordination has been formally defined
[BC87] and software architectures specified [MSB90]. In genera, these systems add a
color attribute to the underlying data records. Brushing a data point modifies the color
attribute of itsrecord, and affects its display in other plots. 1n the image-browsing
domain, the overview-and-detail coordination has been formally defined [PCS95] using
constraints between a field-of-view box in the overview and the panning scroll barsin

the detail (Figure 2.1).

%:
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Figure 2.1: Overview and detail specification for image browsing
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2.1.1 Object-based vs. Attribute-based Coordination

In general, coordination in information visualization can operate as either object-
based or attribute-based. In object-based coordination, users interact with individual
data objects such as folders and files, data points, etc. Brushing and linking data points
isan example. Yet, while object-based coordination is the more common form of
interaction, no formal model comprehensively describes the behavior of the common
coordinations in the object-based approach.

In attribute-based coordination, users interact with the attribute space containing the
data objects. This hastwo primary uses. spatial navigation and filtering. Spatial
navigation in 2D and 3D spacesis used in coordinating the panning and zooming of
data plots with common axes and image browsers, based on attribute ranges. Filtering,
as in Dynamic Queries [AS94], enables selection or elimination of data points by
specifying attribute ranges in queries. These applications have been well specified.

Snap focuses on object-based coordination, because it is the more common form of
interaction and of more general utility to information visualization, and has not been
well explored. Object-based coordination is more general in terms of supporting many

different types of data and visualizations.

2.2 Hexihility in Coordinated Visualization
Systems with coordinated-visualization user interfaces can be classified by their
level of flexibility in data, visualizations, and coordinations:

1. Dataflexible: userscan load their own different data setsinto the

visualizations.
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2. Visualization flexible: users can choose different sets of visualizations as
appropriate for the data
3. Coordination flexible: users can choose different types of coordinations
between pairs of visualizations as needed for exploring or navigating
relationships in the data.
Some systems are not intended for flexibility. For example, Windows Explorer
always displays the same data set (the hard drive file structure), with the same
visualizations and coordinations.

2.2.1 DataFexible

Most systems are at the first level of flexibility. They are flexible for data but not
for visualizations or coordinations. Users can load their own data, but are always
presented with the same hard-coded coordinated-visualization interface.

For example, the Treemap visualization tool (Figure 2.2) can load and display any
hierarchical data set of users choosing, but remains constant in its pair of visualizations
(the Treemap visualization and the details pane) and the coordination between them
(selecting a node in the Treemap displays associated data in the details pane).

Many data-flexible systems have been implemented, covering a variety of domains.
Appendix B provides ataxonomy of these systems, based on the types of coordinations

they use, with descriptions of many of the systems.
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Figure 2.2: Treemap (left), and details pane (top right)

2.2.2 Visudlization Flexible

At the second level of flexibility, systems are flexible in choice of visualizations
(and data). However, users cannot establish a different type of coordination between
two visualizations with these systems.

Exploratory data analysis (EDA) systems, such as Datadesk [Vel88], SAS
Insght/IMP, EDV [EW95] (Figure 2.3), and Spotfire [AW95], display a data table in
many different types of visualizations of users choosing such as scatter plots, bar charts
or histograms. All the visuaizations are coordinated for brushing-and-linking, allowing
users to relate data points across visualizations. These systems provide a toolbox of
visualizations that users can choose from (asin Figure 2.4). In each of these systems,

the brushing-and-linking coordination is afixed and global operation in their interfaces.
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Some systems such XGobi [BCS96] let users specify many options for the brushing,

such as accumulation, color, glyphs, etc.
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Figure 2.3: EDV, brushing and linking

=

fiilll BarfPie Charts

% Overlay Plots
.

- Spinning Plot

4
m-]/; Pareto Charts

Control Charts

Contour Plot

£ Ternary Plot

Figure 2.4: SAS JMP visualization toolbox menus
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In databases, Visage [RLS96] extends the brushing coordination to multiple tables
by brushing across relational joins. With Visage's “information-centric” approach,
users can drag-and-drop data items between visualizations to display them in different
ways. The Visage VQE [DRK97] component also coordinates dynamic queries across
all visualizations within a VQE window. The Visage SAGE component (Figure 2.5)
generates different types of visualizations. Users specify the visualization by

associating data attributes with visual elements.
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Figure 2.5: Visage's SAGE specifying a horizontal bar chart

2.2.3 Coordination Flexible

At the third level of flexibility, systems are flexible in the coordinations between
visualizations (and generally flexible in data and visualizations too). There are two
kinds of flexibility in coordination: choosing the visuaizations to coordinate, and

specifying the type of coordination between them.
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Most of these systems provide only one type of coordination but let users choose
which visualizations to coordinate. The Apple Dylan programming environment
[DPO5] (Figure 2.6) lets users browse hierarchical object-oriented programs by splitting
and linking frames so that selecting afolder in one frame displays its contentsin the
other frame (e.g. generalized Windows Explorer). To link frames, users drag the
‘output arrow’ from one frame to the ‘input arrow’ of another frame. Spreadsheet
Visualization [CBR97] (Figure 2.7) arranges many small 3D visudizations as cellsin a
2D grid. Then, users can select awhole row or column of visualizations to synchronize
their 3D navigation. With Logos Bible Software, users can coordinate scrolling text
windows of different trandations and commentaries to synchronize scroll based on

chapter and verse. Users select from awindow list to synchronize one window to

another (Figure 2.8).
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Figure 2.6: Apple Dylan with three split and linked frames
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Figure 2.7: Spreadsheet Visualization
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Figure 2.8: Logosdialog for choosing windows to synchronize scroll

DEVise [LRB97] alows users to select some different types of coordinations
between visudizations. In plots with common axes, users can synchronize panning and
zooming between plots or create a field-of-view box in one plot to control another
(Figure 2.9, Figure 2.10). Users can also establish set operations between visualizations

so that the datain several visualizations can be combined and displayed in another
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visualization. Various menus and dialog boxes are used to establish these
coordinations. It isinteresting that the mechanisms for establishing each type of
coordination are very different in the DEVise user interface. Asin Visage, users create
visualizations by mapping data attributes to visual elements.

In the image-browsing domain, LinkKit [Nor98] (Figure 2.11) allows usersto
display and coordinate different 2D views of the Visible Human 3D image data. Users
can coordinate views for orthogonal dicing, synchronized dlicing, and panning by field-

of-view box.
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Figure 2.9: DEVise, three bar charts synchronized by date on the X-axis

Figure 2.10: DEVise dialog for specifying plot attributes to synchronize
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Figure 2.11: LinkKit navigating the Visible Human

Snap builds on these systems. It borrows Visage's information-centric approach
(object-based), making individual information items the basis of coordination rather
than 2D information-space axes asin DEVise or LinkKit (attribute-based). Snap uses a
drag-and-drop action similar to Apple Dylan to select visualizations to coordinate.
However, Snap’s coordination model, specification user interface, software architecture
and ultimate purpose are unique. Snap allows users to construct a variety of common
coordinations quickly and easlly.

Snap also differsin its use of independent visualizations. Each of these systems
uses afully integrated architecture, in which visualizations are implemented within the
system itself. Snap’s architectural approach is similar to that of the Cyberdesk
prototype [DAP97], which allows users to select text in any window and then choose a
“service”, such as aweb search or address book application, to display search hits for
that text. Independent applications can easily register themselves as an available

service.
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2.3 Construction in Visualization

There are avariety of other approaches used for construction in visualization
environments.

In scientific visualization, data-flow systems such as ConMan [Hae88], AV'S, and
IBM Data Explorer (Figure 2.12), also employ aform of dynamic linking, but for a
different purpose. Userslink a variety of modules to create custom data processing and
visualization pipelines, much like pipes on the Unix command line. Complex data
structures are passed between modules. Some modules computationally transform the
data before passing it on, and some display the data graphically. In contrast, Snap
focuses on coordinating user interaction in visualizations. Snap coordinations transmit
interaction rather than data, and coordinations are bi-directional like constraints rather

than pipes.
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Figure 2.12: IBM Data Explorer, data-flow (right) and visualization (left)
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Filter-flow systems such as Linkwinds [JBO94] (Figure 2.13) behave similar to
data-flow systems, but provide interactive data filtering capability. Users link dynamic
query filter controls and visuaizations in a pipeline network. Selecting attribute ranges

in acontrol or visuaization filters the data displayed downstream in the pipeline.
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Figure 2.13: LinkWinds

Constraint-based tools allow users to construct interactive displays by specifying
various mathematical relationships between objects. These systems are generally
intended for specification of more complex interaction within a visualization. For
example, with ThingLab [Bor86] users can construct complex interfaces that respond to
direct manipulation interaction. [HM90] provides a smplified constraint-based

specification for visual layout of objects in a user interface that adjuststo resizing.

24



LiveDocs [MHGOO0] and InfoStill [CHH99] alow authors to easily publish
visualizations as interactive data reports. Authors can place afew different types of
data plots (coordinated for brushing and linking) within context on aweb page, and use
hypertext links to invoke various saved states of the visualizations.

At the opposite end of the spectrum from Snap are visualization programming
toolkits. Toolkits provide programmers with alibrary of reusable visualization
primitives. However, coordination beyond brushing-and-linking is rarely included as a
primitive. Amulet [MMM97] includes constraint capabilities that can be helpful for
implementing coordinations, but are ill at the programmer level. Technologies such as
COM and CORBA [Vin97] areimproving programmers capability to establish
communication between independent applications, a key ingredient for coordinating

independent visualizations.

2.4 Evaluation

Little work has been done to study and evaluate the use of coordinated
visualizations. Several empirica studies have compared specific coordinated-
visualization interfaces to other approaches such as fish-eye visualizations and detail-
only visualizations for browsing hierarchies [CS94] [ SSS86] and large 2D spaces
[BWOO] [PCH92]. In general, these studies indicate an advantage of coordinated
visualizations over single detail-only visualizations. However, the studies did not
determine why or what aspect of the coordinated visualizations caused improved
performance. Wasit the additional information displayed in the multiple visualizations

or the interactive coordination between them?
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Even lessis known about users' ability to construct such coordinated exploration
environments. Usability work on Apple Dylan [DP95] indicates that once users were
shown how to split and link its frames, they were able to remember it. Userswere
successful with Dylan’s single type of data, visualization, and coordination. However,
will that carry over to a general coordinated-visualization environment? Can users
grasp the notion of establishing different types of coordinations between different types
of visualizations? Can users construct appropriate interfaces for themselves this way?

Clearly, a deeper level of understanding about users and coordination is needed.

2.5 Summary

These systems provide a foundation of visualization coordination and flexibility that
Snap builds on (see Figure 2.14). Snap is a coordination-flexible level system,
providing flexibility in data, visualizations, and coordinations. Snap users can construct
many common types of coordinations, more than the brushing-and-linking provided by
Visage and its cousins. It also uses the object-based approach, which enables more
general utility for information visualization interfaces than the attribute-based approach
of DEVise. In addition, Snap employs independent visualizations, enabling it to be

easly extended by others, whereas each of these systems is monolithic.

I ndependent Integrated

visualizations visualizations
Data COM, CORBA | Toolkits, C++
Flexible
Visualization Snap EDA systems,
Hexible Visage
Coordination Snap DEVise
Hexible (attribute-based)

Figure 2.14: Constructing coordinated visualizations
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Chapter 3:
Modd of Visualization Coordination

3.1 Background

Snap-Together Visualization is based on a strong underlying model of visualization
coordination (the Shap model). The goal of this model isto provide a sound theoretical
foundation on which the Snap system, user interface, and software architecture can
operate. It must have sufficient generality to support:

common types of information, such as numeric, textual, hierarchical, etc.
common types of visualizations from the field.
common types of coordinations for information exploration.

The model must also maintain sufficient simplicity to remain in harmony with the
practical architectural goals of integrating independent visualizations. The Snap model
formally defines a visualization, coordination, and a coordinated-visualization interface.

In the search to develop this model, severa attempted models of coordination were
explored but discarded due to their inability to provide a generalizable solution. These
included:

Filter model: anetwork of filters between visualizations.

Widget model: user-interface widgets linked using mathematical functions, like
constraints.

User input model: mouse clicks in one visualization are trandated to clicksin

another visualization.
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Two critical realizations led to the development of the current model: First, the
recognition of coordination as a visualization problem. That is, coordination deals with
each visualization as awhole, not just individual widgets or components within
visualizations. Since avisualization is aview of data, it is essentialy the datathat is
being coordinated. Hence, coordination is data dependent.

Second, the recognition of the need for a strong underlying data model to enable a
strong coordination model. For example, | sakowitz was successful with RMM [I SB95]
because he used a strong underlying relational data model to drive the construction of a

web site’ s pages and hyperlinks.

3.2 Relational Model of Visuaization Coordination

The Snap model is based on the relational data model. The relational data model
provides severa benefits:
A popular, well-defined, and general-purpose data format.
Consistency with common visualization practice.
Unique identifiers (primary-key values) for tuples.
Well-defined data extraction capability (queries).
Explicit representation of relationships (joins).
3.2.1 Relational Schemata
With the Snap model, coordinated-visualization interfaces can be constructed to
explorerelational data. The datais composed of a set of relations, each of which
contains a set of tuples. Each relation specifiesalist of attributes for which its tuples
contain values. Each relation has a primary-key attribute, whose values uniquely

identify each tuple in the relation. Relations may also have a set of foreign-key
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attributes, each of which relates tuplesin its relation to tuples in another relation via
joins.

Actually, the pure relational data model does not explicitly code the primary-key
and foreign-key join relationships between relations. The relationships are only evident
when join queries are defined. However, modern relational database management
systems such Microsoft Access and Oracle do explicitly specify the relationshipsin
schema diagrams and store them in the form of constraints. A schema diagram shows
the relations and their attributes as nodes, and the join relationships as edges between
them. For example, Figure 3.1 shows the Access schema diagram of the file-folders
database from the example in Chapter 1. There is a one-to-many relationship from

foldersto files.

=7 Relationships HI=]
-

parentFolderID
Mame

Path

type

size

awner
CreationDate
ModifyDate

Figure 3.1: Schemadiagram

3.2.2 Snap Model Overview

With the Snap model, coordinated-visualization interfaces for relational data are

constructed based on the data schema. Thereisadirect correspondence between
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concepts in the relational data model and concepts in coordinated-visualization user

interfaces (see also Figure 3.2):

Relational Data Model Coordinated-Visualization User Interface
Relation = Visualization

Tuple = Iteminavisualization

Primary key = ItemID

Join = Coordination

In Snap, a visualization displays arelation. Coordination between two
visualizations is based on the join relationship between their relations. Thisis
somewhat similar to RMM [1SB95], which generates hyperlinks based on join

relationships.

Relational Table: M | Table:
Folders 41—’ Files

Data: Join

v v
_ : Coordination 1Z.
Interface: Plot [ » Tabular
Select Load

Figure 3.2: Snap model
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3.2.3 Rdationsinto Visualizations

In the Snap model, avisudization is defined as the use of a visualization type (e.g.
scatter plot, Treemap, etc.) to display a single relation from the data. Hence, a
visualization is defined as the pair:

Visualization = (visualizationType, relation)

There are two classes of visualizations:

Relation visualizations: Inthe common case, arelation of many tuplesis
displayed in the visualization. Generally, each tuple in the relation is depicted as an
individual itemin the visualization. For example, a scatter plot displays each tuple as a
dot using two of its attributes as the coordinates (Figure 3.3). A tabular visualization
displays each tuple asarow. The relation must have a primary-key attribute to uniquely
identify individual tuples.

Single-tuple visualizations: A single tuple is displayed in the visualization.
Thistype of visualization is often used in two common sSituations: First, atextual
visualization used as the detail view in a details-on-demand coordination to display all
the attributes of a single tuple selected in another graphical visuaization (Figure 3.3).
Second, one or more of the tuple's attribute values are used to locate and display
information stored external to the data. For example, aweb browser displays aweb
page given its URL, or afile viewer displays a file given a pathname. These are output-

only visualizations.
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Figure 3.3: Relation visudization (left), single-tuple visualization (right)

3.2.3.1 Visualization Actions
Visudlizations are interactive. Each visualization supports a set of actions that can
be performed on individual tuples. These actions can be invoked interactively by users,
allowing them to indicate interest in atuple, or programmatically by the system. These
actions are called primary-key actions, because the tuple acted on can be identified by
its primary-key (PK) value. Example actions include:
Select: select atuple to visually highlight it. For example, clicking on adot ina
scatter plot colors the dot bright yellow.
Scroll, zoom, etc: navigating to atuple to bring it to the center of view. For
example, scrolling atextual list to bring an item to the top of the window, or
zooming onto anode in a Treemap, or centering the focus on an item in afish-

eye visualization.
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Since actions are visuaization dependent, each visualization defines the set of
actions it supports (providing a name for each action) according to the interaction
mechanics of the visualization's user interface. In genera, visualizations have two
types of actions. selection actions and navigation actions. For example, Treemap has
three actions:

Select click: clicking on anode highlightsit with a yellow rectangle.

Select mouse-over: moving the mouse over a node highlights it with awhite
rectangle.

Zoom: double-clicking a node zooms that node to fill the view.

In addition, each visualization also has aload action. The load action loads and
displays only the specified tuple(s) from the relation into the visualization. When used
as a primary-key action, a single tuple identified by its primary-key value is loaded into
the visualization. Thisis used with single-tuple visualizations.

The load action can also be used as a foreign-key action. In this case, multiple
tuples, identified by the value of one of their foreign-key (FK) attributes, are loaded into
the visualization. The specified value is thus a primary-key value of atuple in a joined
relation, and hence the loaded tuples are all related to that tuple.

When aload action isinvoked, the visudization isfirst cleared so that only the
tuples from the current load action are displayed. This enables a visualization to be
used to display different portions of alarge relation based on external input. If the load
action is not used, then the entire relation is displayed in the visualization.

Hence, an action invocation can be expressed as atriple:

Invocation = (visualization, action, PKvalue)
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That is, action isinvoked in visualization on a tuple identified by PKvalue. If the
action isload, then it must also specify primary-key or foreign-key action. Foreign-key

actions specify the foreign-key attribute to use. E.g. load(PK), or load(FK;).

Visualization |Se€ct (PK)

(Relation) M» Primary/foreign-
e key values

Load

0N

Figure 3.4: Diagram of avisualization and its actions

3.2.4 Coordinating Visualizations

In the Snap model, a coordination tightly couples an action in one visualization to
an action in another visualization. Thus, when users invoke the former action, Snap
automatically invokes the latter, and vice versa. The tuples acted on in each
visualization are related by the join between their relations. When users invoke one of
the actions, joining the visualizations' relations determines the corresponding tuples to
act on in the other visualization.

Hence, a coordination is defined as an action-invocation pair:

Coordination =
((visualizationy, action;, PKvalue), (visualization,, action,, PKvalue))

The PKvalue is bound between the two invocations. Since this can be assumed, the

short-hand notation is:

Coordination = ((visualizationy, action;), (visualization;, action,))



A coordination between a pair of visualizations is established by choosing the
actions to tightly couple. The join relationship between the visualizations' relations
determines which of the three possible combinations of primary-key and foreign-key
actions can be used:
3.2.4.1 One-to-One: Primary-Key to Primary-Key

Thisis aprimary-key to primary-key relationship, and is often the result of
displaying different projections of the same table in multiple visualizations. A primary-
key action in one visualization can be tightly coupled to a primary-key action in the
other, linking their primary-key values. Hence, when one of the actionsis invoked, the

other is also invoked on the same primary-key value.

Visualization |Eect (PK) S (PR)| visualization
Scroll (PK Scroll (PK

(Relation) S0l (PR),, Sl (PK), (Relation)
Load (PK) Load (PK)

Figure 3.5: One-to-one coordination, e.g. brushing and linking

Examples of one-to-one type coordinations, from Chapter 1, are:
Brushing and linking:
Coordination: ((visualization,, select), (visualization,, select))
Operation: Selecting an item in one visualization also selects (highlights) the
corresponding item in the other visuaization. For example, in the file-folder
example in Chapter 1, selecting a folder in the Hyperbolic Tree highlights that

folder in the scatter plot. Figure 3.5 shows the coordination specification.
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Overview and detail:

Coordination: ((overview, select), (detail, scroll))

Operation: Selecting an item in the overview scrolls (or more generaly
navigates) the detail visualization to the details of that item. Likewise, scrolling
the detail selects the currently viewed item in the overview. For example, in
Figure 3.6, selecting a document section from the list on the left jumps the
scrolling document text on the right to that section.

Synchronized scrolling:

Coordination: ((visualization,, scroll), (visualizationy, scroll))

Operation: Scrolling through alist of tuples in one visualization also scrollsto

corresponding items in another visualization. For example, in Figure 3.6,

scrolling the document text on the right also scrolls the document annotationsin

the center to the corresponding section.
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Figure 3.6: Case-law document browser: overview and detail, and synchronized
scrolling
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3.2.4.2 One-to-Many: Primary-Key to Foreign-Key

A primary-key to foreign-key relationship indicates a hierarchical structure between
the relations. Each parent tuple in the first relation has many child tuples in the second
relation.

The allowable combination is: tightly couple a primary-key action in the
visualization on the One side of the relationship with a foreign-key action on the Many
side. Thislinksthe primary-key value of the primary-key action to the foreign-key
value of the foreign-key action. When the primary-key action is invoked, the foreign-

key action is aso invoked using the primary-key value as the foreign-key.

Visualization |2€ct (PK) Visualization
_ | Scroll (PK) _
(Relation) (Relation)
L oad (PK) L oad (FK)

Figure 3.7: One-to-many coordination, e.g. drill down

A common coordination for this relationship typeis:
Drill down:
Coordination: ((parentViz, select), (childViz, load(FK)))
Operation: Selecting an item in the parent visualization loads related itemsinto
the child visualization. For example, in the file-folder example, selecting a
folder in the plot loads and displays the files related to that folder in the tabular

visualization.
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3.2.4.3 Many-to-One-to-Many: Foreign-Key to Foreign-Key

Thisis an implicit relationship that occurs when two relations share acommon
foreign-key attribute. That is, a shared parent relation has a one-to-many join with both
relations.

In this case, aforeign-key action can be coupled to aforeign-key action. A
load(FK) to load(FK) coordination is often used when it is desired for two
visualizations to display different descendants of the same parent. For example, the
U.S. states have counties and voting districts. Two visualizations could be coordinated

to always display the counties and districts (respectively) of the same state.

Visualization | &SP Seleet (P | visualization
(Relation) S, — (Relation)
| oad (FK) | Load (FKy)

Figure 3.8: Many-to-one-to-many coordination

There is one restriction on foreign-key actions. While a visualization may have
severa different load actions available (primary key and for each foreign key), only one
of these load actions can be tightly coupled at atime. Thus, al other visualizations that

coordinate to a visualization's load action must use the same key attribute.
3.2.5 Schema Management

In the Snap model, if additional visualizations or coordinations are desired beyond
what is available in the data schema, then additions can be made to the schema. That is,

if the schema graph does not trandate to the desired coordinated-visualization behavior,
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than simply modify the schema. Hence, with Snap, advanced coordination issmply a
schema manipulation problem rather than a custom user-interface programming
problem.

Schema management is used in two Situations. creating queries to generate desired
visualizations, and establishing relationships to generate desired coordinations.

First, when the data tables in the schema do not provide the appropriate relation
needed for avisuaization, then a query (view) can be created to generate the desired
relation. There are three common situations in which queries are used to generate
desired visualizations. Each is based on a single source table. The query can be added
to the schema, with ajoin relationship to its source table. The query must also inherit a
primary-key attribute from its source table.

Projection: Thisis often used when only a subset of the attributes of arelation
are needed for avisualization. The query is one-to-one with the original
relation.

Selection: Thisisused to display a subset of the tuples of arelation. It isone-
to-one with the original relation.

Aggregation: This aggregatestuplesin arelation, and is often used to create
drill-down coordinations. It is one-to-many to the original relation. The
GROUP-BY attribute is used as its primary-key attribute.

Second, if the schema has no direct primary-key or foreign-key relationship between
two relations, then a coordination cannot be established between their visualizations.

However, if thereis an indirect path through other relations, then it is generaly possible
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to modify the schemato generate the appropriate behavior. For example, a query could

be created that joins the relations along the path.

3.3 Graph Model of Composite Coordinations

The previous section examined coordinating two visualizations together. Now, this
is expanded to composing many visualizations with many coordinations. Coordinated-
visualization interfaces can be defined using a graph model. Expanding on the above
definitions for a visualization and a coordination, a coordinated-visualization interface
(CV1) isdefined as a set of visudizations (V) and a set of coordinations (C) between
them:

CVI = (V, C), where
V ={vy, ..., o}, V; = (visualizationType, relation)
C={ci, ..., Cm}), Ci=((v;, action;), (v, actiony)), where vj,vi 1 V.

Thisis agraph in which nodes are visualizations and edges are coordinations.
Edges are labeled at both ends with the actions that are tightly coupled in the
coordination. Inthe Snap model, since visualizations correspond to relations and
coordinations correspond to joins, the coordination graph corresponds directly to the
data schema graph. For example, Figure 3.9 shows the coordination graph for the file-
foldersinterface for system administrators from Chapter 1.

This model indicates severa properties that further describe how coordinated-

visualization interfaces operate as follows.
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Figure 3.9: Coordination Graph

3.3.1 Commutative

((v;, action;), (vk, actiony)) U ((vk, actiony), (v;, action;))

Snap coordinations are bi-directional, so that either action triggers the other. For
example, selecting afolder in the Hyperbolic Tree highlightsiit in the scatter plot, and
by commutativity, selecting in the plot highlights in the Hyperbolic Tree. Note,
however, that each action is strictly tied to its visualization. Hence:

action; * actiony b ((vj, action;), (vk, actiony)) * ((v«, action;), (v;, actiony))
3.3.2 Trandgtive
((vi, action;), (v;, action;)) U ((v;, action;), (v«, actiony))
P ((vi, action;), (vk, actiony))

Coordinations can be chained end-to-end. Invoking an action at one end will
propagate down the chain, triggering actions at each visualization. All visuaizations
related by trangtivity to the visualization where the action is invoked will have their
coordinated actions invoked. For example, brushing-and-linking can be established

across three visuaizations. In the file-folder example, selecting afolder in the
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Hyperbolic Tree also selectsit in the plot, which in turn loads files into the tabular
visualization.

Invoking an action on any visualization in the coordination graph essentially
initiates a graph traversal. Coordinations only propagate at each visualization if the
incoming action from one coordination matches the out-going action of the next. For

example, selecting afolder in the plot loads files into the tabular visualization, but does
not cause any action on the file viewer. Formally:
((vi, action;), (v;, action;)) U ((v;, actiony), (Vk, actiony))
P ((vi, action;), (vk, actiony))
Hence, a connected component can be defined as a subset of a CVI containing all
visualizations and coordinations related by transitivity to a single visualization action
invocation. Connected components are essentially spheres of interaction in the

coordinated-visuaization interface. The file-folder example has two connected

components: selecting folders, and selecting files (Figure 3.10).
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Figure 3.10: Connected components
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Using the expanded notation for coordination (viz, action, PKvalue) with trangitivity
shows that only the primary-key value of the action initiated by the user is propagated
during the traversal of a connected component.

The trangitive property enables the deduction of coordinations. For example, given
three visualizations and two transitive coordinations connecting them, the third
coordination can aways be deduced. Figure 3.11 shows the 4 possible transitive
combinations of the three relationship types (PK-PK, PK-FK, FK-FK). For example, in
the top right diagram describes the file-folder example as C=Hyberbolic, B=plot,

A=tabular. The coordination C-A can be derived as select to load.

A

A FKi
PK  PK PK

1Y)
A

B« C B« C

Figure 3.11: Deriving coordinations with transitivity
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3.3.3 Conflict Free

An important property of the Snap model is that its coordinations are conflict free.
In designing systems that use coordination, there is often a concern about possible
conflicts due to cyclesin the coordination graph. For example, in an exotic scenario,
selecting a U.S. state on a map might coordinate to highlight the state’s governor ina
list of the 50 governors, which might then coordinate to highlight the governor’s birth
state on the map. This creates a cycle and would then attempt to highlight the governor
of that state, etc. A conflict occurs when the same action is invoked on the same
visualization twice (or more) with different primary-key values in a single coordination
execution cycle. Conflicts can result in endless looping or mismatched state between
visualizations.

However, cyclesin Snap are always redundant and never conflicting. That is, when
a coordination propagation visits a visualization a second time due to a cycle, the
primary-key value given is aways the same value for both visits, resulting in a
redundant action and not a conflict. Thisis because only a single primary-key valueis
propagated during a single coordination traversal. Thisis easily proven using the
transitive property. When deriving a self-coordination using transitivity around a cycle,
the result clearly shows the equality of the PKvalue:

((v;, action;, PKvalue), (vj, action;, PKvalue))

Hence, the Snap model would not allow the above exotic example to be constructed.

The offending component is the ‘birth state’ coordination. Thisis a one-to-many

relationship from states to governors, and hence cannot support a select (PK) to select



(PK) coupling. A potential solution isto employ athird visuaization to display the
birth state. From a user’s point of view, this would make more sense anyway.

A mark-on-visit traversal algorithm can be used to detect and stop cycles (self-
coordinations). Each action of a visualization is marked independently. Thus, a

visualization can be visited twice, but only for different actions.
3.3.4 Subgraphs

Subgraphs can be easily added to or extracted from a coordinated-visualization
interface. These subgraphs are themselves CVI’s. Hence, this enables the saving and
reusing of CVI’s. A saved coordinated-visualization interface can be immediately
instantiated and coordinated to other visualizations. Essentidly, this enables the
construction of composites as new primitives. This powerful notion resembles how

programs or macros are saved for later use in more complex programs.

3.4 Applications and Limitations

The Snap model captures a variety of types of data, visuaizations, and
coordinations that are commonly used in information visualization. Appendix A
describes Snap’s use in adiverse set of examples, including census statistics, GIS maps,
case-law textual information, photo libraries, hierarchical file structures, web sites, and
address databases. The model exploits existing functionality of visualizations and
exploits data relationships to enable coordinations for navigating and exploring
information.

The Snap model focuses on interaction with individual data objects (i.e. relationa
tuples). Hence, thismodel is not well suited for attribute-based spatial coordinations,

such as large 2D or 3D image browsing applications and scientific visualization.
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Navigation in these applications is often based on pixels or voxels, asin the Visible
Human Explorer [NSP96] for example. While it would be possible to model imagesin
arelational data model (e.g. pixel = tuple), it smply is not very practical.

However, such spaces often have meaningful objects embedded, in which case the
Snap model is very appropriate. For example, the Visible Human 3D image data
contains segmented anatomical structures with links to databases of anatomical
information such medical terminology dictionaries. Figure 3.12 shows a mockup from
early work on Snap which uses brushing and linking between anatomical objectsin the
image data (like an image map) and terms in the Medical Subject Headings hierarchical
dictionary [Nor98]. In fact, based on extensive work on 3D image browsing with
medical domain experts [CSP97], Konstan discovered that the experts desired these

types of cross-media database coordinations more than the spatial navigation

coordinations [Kon97].

3D Browser nn = Hierarchy Browser
File Options Help

rMusculoskeletal System
Cartilage

Fascia

Ligaments

Muscles :I
Skeleton

~Bone and Bones
rDiaphyzes
~Epiphyses
~Hyoid Bone
Pelvic Bones
rSesamoid Bones

File Options Help

Figure 3.12: Relationships between image and textual data
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The embedding of meaningful objectsis also found in other domains aswell. For
example in continued work on Pad++ [BH94], a zoomable user interface in which 2D
gpatia navigation is primary, Bederson has increasingly employed an object-based
approach where users click hyperlinks to navigate between objects rather than manual
gpatial navigation.

Dynamic Queries [AS94] and coordinating plot axes (asin DEVise [LRB97]) are
also attribute based. Although these could be handled in Snap by enumerating matched
objects, thisis not very efficient. Dynamic Queries requires specialized data structures
and algorithms in each visualization, so is inherently in conflict with the goal of using
independent visualizations anyway. It would be interesting to explore how the

attribute-based approach could be combined with the Snap model.

3.5 Extensionsto the Model

Snap’s conceptual model is intentionally designed with simplicity to smultaneoudly
capture the need for amodel of visualization coordination as well as meet the practical
architectural goals (as discussed in Chapter 5). However, this model may be extended
in several ways:

3.5.1 Multiple-Tuple Actions

Some actions in some visualizations may be able to act on multiple tuples. Instead
of acting on asingle primary-key value, these actions could act on a set of values. For
example, multiple selection [Wil96] is often used for brushing-and-linking
coordinations to enable usersto highlight several tuples smultaneoudly. Clearly, this
does not apply to all actions. Some actions, such as scroll, are semantically single-

tuple. Others are limited by the visualization's software architecture, e.g. Treemaps can
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only select one node. However, visualizations could mark their actions as single- or

multiple-tuple capable. Then, Snap could allow actions of the same cardinality to be

tightly coupled in coordinations.

In fact, in continued work on Snap at the Census Bureau, multiple selection has
been added. For example, in Figure 3.13, selecting the high income and highly
educated U.S. statesin the scatter plot (using Spotfire's lasso selection capability)

reveds that those states are all in the northeast, the DC to Boston corridor.
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Figure 3.13: Brushing and linking with multiple-tuple selection

3.5.2 Unions and Intersections

The drill-down coordination enables users to select a parent tuple in one
visualization to load and display its children tuples in another (1-M). This could be
extended for union and intersection by using multiple selection and allowing

simultaneous use of different foreign-key load actions as follows:
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Union: Selecting multiple parent tuples in the same parent visualization would
display the union of their children. For example, selecting two folders would
display the files of both in the tabular visualization.
Intersection: Selecting multiple parent tuples from different parent
visualizations would display the intersection of their children. For example,
selecting afolder and a user would display only the filesin that folder owned by
that user. Thiswould alow the construction of smultaneous-menu applications
[HKVO0O0]. Thisrequires allowing load actions on different foreign keys
simultaneously.
This approach would enable usersto select from several different overviews to filter
items in a main visualization, enabling functionality very smilar to Dynamic Queries.
3.5.3 Other Foreign-Key Actions

It would also be possible to enable multiple-tuple actions to act as foreign-key
actions. For example, selecting a parent tuple in one visualization might coordinate
across a 1-M join to select and highlight al its children tuples in another visualization.
This could be used for brushing-and-linking across many-to-many relationships.

However, thiswill likely introduce confusion for users. Primary-key actions and
foreign-key actions are semantically different, but users would not be able to distinguish
primary-key selections from foreign-key selections in the visualization. For example,
what should happen if users select a child tuple in the latter visualization? Also, should
the foreign-key selection of children tuples initiate new primary-key selection actions

for each? This modification would introduce the potential for conflicts in coordination.
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3.6 Summary

The Snap model provides a solid, well-founded basis for visualization coordination.
It is based on the relational data model. Visualizations display relations, and
coordinations correspond to one-to-one and one-to-many join relationships. A graph
model describes the coordination of multiple visualizations. The Snap model isthe

underlying basis for the Snap user interface and software architecture.
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Chapter 4:
User Interface for Coordination
Construction and Operation

4.1 Background

The Snap-Together Visualization user interface enables data users to quickly and
dynamically construct coordinated-visualization interfaces without programming.
Then, they can efficiently explore their data using these powerful coordinated-
visualization interfaces that are custom tailored to their data, tasks, and preferences.

Snap isused in two modes. Usersfirst construct interfaces, then operate them to
explore. However, there is not a distinct mode switch between modes. Users can
interchange activities on the fly as needed.

Chapter 1 provided an overview scenario of the Snap user interface. This chapter
proceeds to describe the interface in detail.

4.1.1 Users

As indicated by the study in Chapter 6, the users that construct interfaces with Snap
are likely to be the more data-savvy users or data owners, such as anaysts or data
providers. These highly motivated users are familiar with the general content and
structure of the data (e.g. the data schema), and have accumulated some experience in
constructing with Snap.

Some of these users construct interfaces for their own use. For example, an analyst

at the Census Bureau might quickly snap together an interface while examining trends
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in newly collected survey results. The analyst could also present findings to co-workers
using the same interface.

Users can also construct interfaces for use by others. For example, a data-product
specialist at the Census Bureau could construct an interface to accompany the
distribution or publication of census-2000 population statistics. Then, casual readers
such as policy makers or business owners could easily examine the data, using the pre-
constructed interface, and make decisions.

As an in-between case, an analyst might construct interfaces for use by other
analysts in the organization, similar to the way they share Excel macros [NM91].

Severa enhancements to the Snap interface are described later in this chapter that
are amed at enabling even casual end usersto construct coordinated-visualization
interfaces themselves. Thisis accomplished by using direct manipulation techniques to
reduce users learning time, performance time, and error rates.

4.1.2 Requirements

The Snap user interface is soundly based on the underlying Snap model for
visualization coordination. For construction, the model completely specifies what
choices users make to specify a new coordinated-visualization interface (CV1).
Recalling the definition:

CVI = (V, C), where
V ={vy, ..., o}, V; = (visualizationType, relation)
C={ci, ..., Cm}, Ci=((v;, actiony), (v, actiony)), where vj,vi 1 V.

Hence, to construct a coordinated-visualization interface, users must:

1. create visualizations by matching relations to visualization types, and
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2. coordinate visualizations by selecting pairs of visualizations and specifying
actions to tightly couple in each.
In addition, the possible choices of actions to tightly couple are specified by the data
schema, the one-to-one and one-to-many relationships. These definitions provide users
with syntactic guidance only. Semantic guidance comes from the semantics of the data

schema and the desired tasks to support.

4.2 Coordination Construction

Snap’ s user interface employs a two-step approach to construction. Usersfirst open
and display relationsin visualizations. Then, they coordinate the visualizations by
tightly coupling actions between the visualizations.

Implementation note: Snap supports database formats that have ODBC drivers,
such as Microsoft Access or Oracle (see Implementation section of Chapter 5). To edit
the database and schema, the database’ s native software isused. For example, Access
databases are manipulated using Access s GUI. For databases that do not have the
necessary software, Snap provides asimple SQL text editor to add and edit queries.
The description in the remainder of this chapter assumes an Access database.

4.2.1 Reationsinto Visualizations

Starting Snap displays the Snap Menu window. To begin construction and
exploring a database, users first open the database using Snap. Any database (of the
supported formats) can be opened with Snap. That is, Snap is not hard wired to a
specific database or schema. Snap determines the schema from the database.

The Snap Menu (Figure 4.1) displays alist of the tables and queries in the database

(left). It also displays a menu of the available visualization types (right). To display a
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relation in a visualization, users simply drag the desired table or query name onto a
visualization-type button (or select arelation and click a visualization button). The

visualization tool opens and the relation is loaded and displayed. Users can open as

many as needed.
i, Snap-Together Visualization Menu  [I[=]
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Figure4.1: Snap Menu

4.2.1.1 Visudization Types
The current implementation has the following visualization types:

Scrolling list: Displays each tuple like a textua report with each attribute on a
new line (Figure 4.2). Particularly useful for long text (e.g. memo fields).
Multiple tuples are separated by a horizontal rule. Actions: select atuple, and
scroll to atuple.
Paging list: Like scrolling list, but displays only one tuple at atime. A paging
bar enables navigation to the other tuples. Actions. select atuple, and pageto a

tuple.



Table: Standard rows (tuples) and columns (attributes) display. Actions. select
atuple, scroll atuple to the top.

Spotfirec Commercia dynamic-query software, including scatter plot, bar
chart, pie chart. Actions. select atuple by click or mouse-over.

Outliner: Standard nested-indented hierarchy widget. Actions: select atuple.
Treemap: Research software that displays hierarchies by area-coded dice-and-
dice containment. Actions. select atuple (node) by click or mouse-over, zoom
onto atuple.

Hyperbolic Tree: Commercial Java applet (Inxight Software) that displays
hierarchies as aradia fish-eye. Actions: select and center focus on atuple.
Internet Explorer (IE): Accepts arelation with asingle tuple and a single
attribute which contains the URL or pathname of the web page, folder, or file
(file viewer) to display. Actions: none, output only.

Image Thumbnails: Displays a set of thumbnail images in a flexible manner,
using pathnames attribute. Actions. select atuple (image), zoom atuple.
Image Maps. Uses |E to display an image map. Actions. select atuple (region
of the image map).

ArcView Maps. Commercial GIS software that displays choropleth (colored by
attribute) geographic maps. Actions: select a tuple (geographic entity), zoom on

atuple.
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Figure4.2: Scrolling list visualization

The hierarchical visualizations require a pathname attribute that specifiesthe
hierarchical structure of the tuples. There are two variations:
Complete hierarchies have atuple for each node in the hierarchy. For example,
in the file-folder example, each folder in the hierarchy is represented by atuple.
Leaf-only hierarchies have tuples for only the leaf nodes. For example, a
relation of U.S. states might organize the states into six major regions. Hence,
the region level of the hierarchy does not have tuples, only the states at the leaf

level do.
4.2.2 Coordinating Visualizations
When opening a visualization tool, Snap automatically adds a“snap” button

[288e5 t0 its window in the upper right corner. Thisisintended to be similar to the
way the window manager adds minimize, maximize and close buttons to each window.
To establish a coordination between two visualizations (*snap them together”),
usersfirst identify the pair by dragging the snap button from one of the visualizations to
the snap button of the other visualization (as shown in the Chapter 1 scenario). This

drag-and-drop approach for selecting pairs of visuaizations is similar to that of
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LinkWinds [JBO94] and Apple Dylan [DP95], athough the latter distinguishes between
output and input buttons.

Then, the Snap Specification dialog is displayed (Figure 4.3). The Snap
Specification has two group boxes. The top box displays information about the first
visualization (at the source of the drag-and-drop), and the bottom box displays
information about the second visualization (the destination of the drop). The order of

the visualizations is not important, since coordinations are bi-directional.
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Figure 4.3: Snap Specification dialog

The information displayed about each visualization includes. the title of the
visualization, the name of the table or query in the visuaization, the set of actions
available for tight-coupling, and the primary-key and foreign-key attribute names.

There are three action dots for each visudlization. The actions shown in these dots are
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completely determined by the visualization. If the visualization offers fewer than three
actions, then the remaining slots are grayed out.

Users can then select which of the actions to tightly couple. For example, choosing
the select actions of both visualizations will create a brushing-and-linking style
coordination.

The current implementation does not have access to information about the relational
joinsin the data schema. Hence, users must enforce the primary-key action and
foreign-key action combination rules themselves. The display of the key attribute
names helps users remember the join relationships. The system does attempt to guess
the join by matching the key names, but is fallible of course.

To usetheload action, usersfirst create a parameterized selection query that
extracts tuples by matching the appropriate primary-key or foreign-key attribute to the
given key value. Then, they open this query in avisualization. The presence of the
parameterized query enables the visualization’s load action. They can then tightly
couple the load action in a coordination. The parameterized query enforces the rule that
only one foreign-key or primary-key attribute can be used in a visuaization's load
action at atime.

For example, in the file-folders example in Chapter 1, the select action of the scatter
plot is coordinated to the load action of the tabular visualization. The tabular
visualization displays the results of a query like:

SELECT * FROM files WHERE files.parentFolderID = <parameter>
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4.2.2.1 Modifying Coordinations
Users can edit coordinations by clicking on a visualization’s snap button. The Snap
Specification dialog displays coordinations to that visualization. If there are multiple
coordinations, the combo box at the top of the dialog is used to flip through them.
Users can then change the choice of tightly coupled actions or delete a coordination
entirely.
4.2.2.2 Coordination Suggestion
When the system can determine the join relationship between the visualizations, it
automatically suggests the following common coordinations in the Snap Specification
didog:
Primary key to primary key: suggests select to select, for brushing-and-linking.
Primary key to foreign key: suggests select to load, for drill-down.
Foreign key to foreign key: suggestsload to load.

Users can immediately accept the suggestion, or override with their own choices.

4.3 Coordination Operation

Once the coordination has been established, users can then operate the now
coordinated visualizations. These coordinated-visualization interfaces significantly
improve users performance in many tasks as shown in the user studiesin Chapter 6.
Users are better able to explore, understand, and discover new information.

In addition to guiding the construction of coordinations, Snap’s model also specifies
how the coordinations operate once constructed. The commutative and transitive
properties of the graph model lead to bi-directionality and propagation in the user

interface.
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4.3.1 Bi-Directionality

When users perform either of the actions tightly coupled in a coordination, the other
is also executed. For example, Figure 4.4 shows an interface constructed with Snap for
browsing information on the U.S. states using an overview-and-detail coordination.
Selecting a state in the overview immediately scrolls the detail to the information about

that state. Likewise, scrolling through the detail highlights the name of the currently

viewed state in the overview.
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Figure4.4: Overview and detail
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Bi-directionality is an important design property of coordination that is often
violated in the design of user interfaces for other systems. Interface designers often
neglect to include the latter direction of the overview-and-detail coordination. For
example, many web pages with frames enable usersto select anitemin an overview
frame to navigate the main frame (see web frames example in Chapter 1). However,
when manually navigating the main frame, the highlight does not update in the
overview. Asaresult, the interface can depict an inconsistent state, leading to user
disorientation and confusion.

An advantage of Snap isthat user interfaces constructed with it automatically inherit

the robust nature of the Snap model, preventing such poor designs.
4.3.2 Propagation

When users invoke an action in a visualization, the effects will propagate across
chained coordinations. All visualizations coordinated to that visualization either
directly or indirectly through other visualizations will have their tightly-coupled actions
executed. Inthe file-folders example, selecting a folder in the Hyperbolic Tree will

highlight that folder in the scatter plot and load its files into the tabular visualization.

4.4 Additional Features

The Snap model and architecture also enable a variety of other user interface
capabilities that magnify the utility of its coordinated-visualization interfaces. The
following features have already been built:

4.4.1 Save Groups
A coordinated-visualization interface can be saved for later reuse, sharing, or

distribution with data. The Save Group button on the Snap Menu displays the Save
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Group dialog (Figure 4.5). Users select the visualizations they want to save by clicking
the snap buttons on the visualizations, then assign the group a name, such as* Windows
Explorer for System Administrators’.

Then, selecting that name from the combo-box on the Snap Menu automatically

reconstructs the coordinated group of visualizations.

. Select Windows to Save as Group [EI[=] ES | R—_— " (O — Page
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Group Marne: E— | ——
|Wind0wsE:-cpI0rel for Systadrming i
Histary WindowsE splorer for Syzddming
Treemap file broveser

Figure 4.5. Save Group dialog, and Snap Menu opening a group

4.4.2 Extract

Users explore information so that they can extract the needed information required
to accomplish some other task, such as writing a report on Maryland’ s economic status.
Snap allows users to drag-and-drop tuples from visuaizations into other applications
such as Microsoft Word or an email message window. For example, users could select
Montgomery County on a scatterplot of census data, and drag it to a Word document.
When tuples are dropped, Snap displays a small popup list of the attribute names for the

tuples (Figure 4.6). Users select the desired attributes, such as county name, per capita
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income, and population. Then Snap inserts the tuples values for those attributes into the
document text.

Hence, snap can enable drag-and-drop for visualizations that do not support that
capability because Snap tracks the selection actions and provides a drag initiation point
in the visualization’s snap button. Clearly, this capability would be significantly more
powerful if multiple selection were enabled. Users could select the 10 most populated

counties and extract their data to a document with a single drag-and-drop.

. Select Fields: B3
Mame

Figure 4.6. Attribute selector for drag-and-drop data extraction

4.4.3 Search Box

Snap provides a search box that can be coordinated to other visualizations. The
search box enables usersto directly type in a primary-key value, and initiate a
coordination using that value. For example, if the folders primary-key values were their
pathnames, users could coordinate the search box’s search action to the select action of
the folders scatter plot. Then typing a folders pathname into the search box will

highlight the folder in the plot.
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In a more advanced scenario, the search box can be used with computed joins. For

example, aquery could return all the files that have a provided key word in their name

(or perhapsin their contents). The key word can be thought of as a foreign key, joined

to arelation of keywords. The query can be opened in alist visualization and

coordinated to the search box. The search box provides the key word, and the list

displays the resulting file *hits'. This approach is used in the WestLaw scenario for

searching case-law documents (Figure 4.7). Typing a search term reveals case-law

documents containing that term in atextual list of hits as well as a scatter plot. Notice

that the query also returns arelevance value for use on the Y -axis of the plot. This

interface could be coordinated to a case-viewer interface for examining hits.
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Figure4.7: Searching case-law documents

4.4.4 History

History keeping is becoming an important new research topic for user interfaces.

History allows users to quickly review previous states when exploring. Since Snap

receives action events from visualizations, Snap can easily keep a history list of all the
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actions usersinvoke. Snap’s History window displays that list in chronological order
(Figure 4.8). Each event indicates the visualization, action, and tuple. Selecting an

event from the list re-invokes that action on that tuple in that visualization.
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Table - Contents of a Folder [565)  select 573 Ll

Figure 4.8: Snap’s History window

4.4.5 Shopping Basket

While exploring, users can easily gather a set of interesting tuplesin Snap’s
Shopping Basket window, similar to the History window. Selecting atuple in the
basket also selectsit in the visualization it originally came from. This allows usersto
collect atemporary set of items of interest while exploring. These can be used as

bookmarks to return to those items in the visualizations.
4.5 Enhancements

The results of the user studies (Chapter 6) demonstrate that users, with some
training, are able to construct coordinated-visualization interfaces with Snap. The

studies also helped to identify improvements to the user interface that could

dramatically reduce the need for training, improve user performance, and decrease error
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rates. These enhancements focus on reducing the need for query editing, and providing

diagrammatic user interfaces that closely match the Snap model.
4.5.1 Automatic Query Generation

The study on construction revealed that creating new queries using Access was the
primary difficulty for users. Reducing the need to create queries in this manner would
be a major benefit. While the capability for creating queries enables generality,
shortcuts are possible for the common simple situations. An applicable HCI design
principle is: make common tasks easy, possibly at the expense of making rare tasks
more difficult. There are two types of common simple queries that users must often
create: selection, projection.

45.1.1 Selection

When using the load action in a coordination, Snap can automatically create the
appropriate selection query based on the join relationship. In the file-folders example,
when coordinated folders to files with select to load, Snap could automatically infer the
SQL query for files based on the data schema:

SELECT * FROM files WHERE files.parentFolderID = <parameter>
4.5.1.2 Projection

Projection queries are often needed to extract certain attributes from arelation for
display in avisualization. For example, an overview list of states names is generated
using a projection query to extract the Name field from the states relation:

SELECT id, name FROM states
In amodified Snap Menu, the tables and queries list is changed to an outliner

control (Figure 4.9). Users can expand atable or query to reved its attributes. Then,
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users can directly select attributes of arelation and drag them to visualizations, in
addition to the capahility to select an entire relation. Snap can automatically generate
the projection query for the chosen attributes, and automatically include the primary-

key attribute.

| »

Average Age

Average Commute Time
Per Capita Income

kedian Household Income
kedian Rent

Rent % Household Income
Flag Descriptian
WwiebSiteURL
Drivigion_State LeafPath

H

Figure 4.9: Including attributesin the Snap Menu list of tables

4.5.2 Data Compass

The two-phase approach to coordination construction (opening visualizations, then
specifying coordinations) can be combined into one. Once the user has initially opened
arelation in a visualization, the Data Compass user interface displays which relations
the user could coordinate to the current visualization based on the data schema. Users
can select one of the relations, a visualization to display it in, and the actions to tightly
couple. The new visudization isimmediately displayed and coordinated to the current

one as specified. For example, after displaying a visualization of the folders relation,
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the Data Compass indicates that users could coordinate a visualization of files, another
visualization of folders, or other relations such as HardDrives or Users who own the
folders (Figure 4.10).

This approach helps guide users in the construction process, and hence may
significantly reduce training time. It may also match users mental model more closely:
“Where can | navigate to from here?’. This may be valuable when exploring databases
with many relations and very complex schemas (as in SeeData [AEP96]).

The Data Compass user interface divides relations that can be chosen into three
groups based on the join relationship with the current relation:

Parents. One to many towards the current relation.
Siblings. Oneto one.

Children: Oneto many towards the other relation.

Up Level Users,
(parents) HardDrives
1
M
Same Level | Folders|1 1, Folders
(siblings)
1
Down Level M
(children) Files

Figure 4.10: Data Compass
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4.5.3 Overview Diagram

When users coordinate three or more visualizations, an overview diagram (Figure
4.11) is needed to help users understand and manage the coordination graph (that is, a
visualization of visualization-coordination, or a meta-visualization). This helpsto make
the underlying Snap model more salient to users. The overview displays visualizations
as nodes and coordinations as edges. Using direct manipulation, users can construct,
edit, and delete coordinations. A debug mode can allow usersto slowly step through a
coordination propagation cycle. This diagram might also integrate the data schemato
show the correspondence between relational concepts and Snap user-interface concepts,
and to localize al interaction related to construction to a single window.

In LinkWinds [JBO94], users can temporarily view the linkages between its
windows. When clicking the LinkWindsicon, it draws lines between the windows on

the desktop.

Scatter plot | ggect Tabular Viz
(Folders) \ (Files)
Load (FK)
Select Select
Select Load (PK)

Hyperbolic File Viewer

Tree (Files)

(Folders)

Figure 4.11: Overview diagram
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4.5.4 Window Management

The studies aso indicated that window management is a major burden for users.
Two forms of automatic window management [KS97] can help:

Tiling: When displaying many visualizations, users need to tile many windows
on the screen. With tiling, users can easily “dock” visualizations to each other,
S0 that resizing and rearranging is quick.
Packaging: Users can package several visuaizations into a single window
using frames. This allows the group to be manipulated as a whole, for opening,
coordinating, moving, resizing, and deleting. For example, in the WestLaw
scenario, the case viewer is a saved group composed of three visualizations.
This group is a semantic unit that can be instantiated and coordinated to other
visualizations to load and display cases. The three visuaizations could be
packaged to reflect this grouping. This allows saved groups to be treated as a

single visualization, turning composites into new primitives.
4.6 Summary

The Snap user interface enables users to explore information by quickly
constructing coordinated-visualization interfaces without programming. Usersfirst
open relations into visualizations, then coordinate them by selecting actions to tightly
couple. Snap also enables a host of additional features that further amplify its value.
Severa enhancements to the Snap user interface have also been described based on

results from user studies in Chapter 6.
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Chapter 5:
Software Architecture for Visualization
Coordination

The Snap-Together Visualization software architecture enables the dynamic
construction of coordinated visualizations, providing flexibility in data, visualizations,
and coordinations. A major goa of Snap isto coordinate independent visualization
tools. The Snap architecture implements the Snap model and exploits existing
functionality of visualizations to accomplish this goal. Because of Snap’s clean design,
researchers and developers can easily snap-enable their independent visualization tools,

alowing users to employ the tools in coordinated-visualization interfaces of their own.
5.1 Architecture Overview

The Snap system acts as a centralized intermediary between visualizations (Figure
5.1). It aso mediates between the database and the visualizations. The Snap
architecture insulates visualizations from each other, the database, and the rest of the
system. This protects visualizations from having to be programmed to handle the
complexities of visualization coordination. In fact, visualizations are completely
unaware of the concept of coordination. Their only connection to Snap is through a
very simple APl (application programming interface).

Thisis different from standard approaches in fully integrated systems. For example,
in the Visage [RLS96] architecture, when users highlight an item in one visualization it

broadcasts a message to all other visualizations. Then each visualization must itself
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determine the relationship of that itemto its set of items and calculate what action to

take.

Snap-Together Visualization .\‘._\..

Visualization; Visualization,

Figure 5.1: Snap’'s software architecture

5.2 Visualizations

At start up, Snap’s Main Menu displays a menu of available visualization tools.
Each visualization must initially register with Snap in order to be included in this menu.
When initially opening a database, Snap extracts schema information from the
database, including the list of relations (tables and queries) to display in the Main Menu.
When users open arelation into a visualization, the following operations execute:
1. Within Snap, a Visualization-Manager object is instantiated to handle
communication with the visualization.

2. Thevisudization tool is instantiated.

72



3. If therelation isaquery, the query is executed in the database.
4. Thedataintherelation isloaded into the visualization, using the visuaization's

Load Procedure (described in the API section below).

5.2.1 Goalsfor Snap-Enabling Visualizations

Snap is designed to be open, so that developers can easily make their independent
visualization tools snap-able, including existing visualizations and newly developed
visualizations. The effort required to snap-enable an off-the-shelf visualization is
minimized to the extent that even a developer who is not the original implementer of the
tool should be able to make the necessary modifications.

To accomplish this, snap minimizes the impact on visualization implementation.
Snap uses asimple API (application programming interface) to communicate with
visualizations. Thisis analogousto API’sin modern window-management systems for
utilities such as cut-and-paste or drag-and-drop. The Snap AP is proposed as a similar
standard, that can be easily added to a visualization tool by its developers, enabling
users to immediately snap it with many other visualizations. This greatly increasesthe
value and usefulness of the tool for little cost. Effort islow and payoff is high.

Snap limits programming effort by exploiting existing functionality of visualizations
to coordinate them together. The functionality of typical visualization tools includes the
ability to load adata set (e.g. from afile) and display it as visual items in a window.
These tools often provide some form of interactivity, alowing users to select items or

navigate between items.
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To maximize the compatibility of the architecture with typical visualization tools,
and minimize the effort to integrate these tools, the architecture places upper limitson
visualization requirements. Primarily, these aspects of visualizations are NOT changed:

Remain independent software entities. Run as stand-alone applications as

normal, and are not compiled into Snap.

Themselves determine what actions they support (e.g. select, scroll).

Use their existing data input formeat.

Do not need to deal with the larger data context of the database. Handle the data
loaded into them by Snap as normal.

No new user interface requirements.

No requirements for shared data structures, etc.

Do not need to be made aware of the database, other visualizations, or
coordination.

Furthermore, Additions to the visualizations are limited to:

Simple communication protocol.
| dentify tuples by primary-key only (e.g. no complex attribute processing).
5.2.2 Snap Button

When instantiating a visuaization, the Visualization Manager automatically adds
the snap button [28686 10 the visualization's user interface. Thisis similar to the
concept of window managers adding window decoration and controls to each window
when opened. This provides an interaction point for the user for each visualization, and

is used for coordination construction, loading different data, saving groups, €tc.
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| deally the snap button would appear next to the minimize, maximize, and close
buttons on the window’ s title bar. However, due to minor implementation constraints,
the snap button is placed just below these buttons within the window’s client area. This
is accomplished by simply inserting a small child window containing only the snap
button into the visualization window. Hence, the snap button moves and overlaps with
the visualization’swindow. The Visualization Manager tracks resize events of the
visualization’s window, and adjusts the position of the snap button within the
visualization accordingly.

This approach saves developers from needing to add Snap user interface
functionality to their visualizations.

5.2.3 Visudlization API

To be snap-enabled, each visualization must implement the following API. Snap
communicates with the visualization by connecting to these entry points on the
visualization. It isworth noting that this API is not necessarily specific to visualization
coordination. It is quite general, and could be useful for many other applications such
as history keeping, end-user programming, multi-user collaboration, etc.

There are only three elementsin the API:
5.2.3.1 Load Procedure

Procedure doLoad(filename | dataObjRef | SQLstring, PKattribute)

Snap can invoke this routine to load data into the visualization. Visualizations can

choose one of three methods to receive the data:
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File: Snap writesthe tuplesto atemporary file in the format expected by the
visualization, using atrandator routine. Thisisthe approach for most typical
research visualization tools, such as Treemaps and Hyperbolic Trees.

Memory: Snap provides the data using standard ODBC data objects (Microsoft
DAO or ADO). Thisiscommon for visualizations that were developed
specificaly as components (e.g. ActiveX), such asthe tabular visualization
which uses a standard grid control, or developed specifically for Snap, such the
textual list visuaization.

SQL: Snap provides the ODBC connect string and the SQL query string that
the visualization then usesto extract the data from the database itself. Thisis
useful for visualization tools that have built in database support, such as
Spotfire.

Visualizations may also need to know which attribute to use as the primary key.
Visualizations should attempt to preserve any visual settings across loads.
5.2.3.2 Action Procedure

Procedure doAction(action, PKvalue)

Snap can invoke this procedure to programmatically execute the specified action on
the tuple identified by the specified primary-key value. For example, a coordination
could invoke the select action on a Spotfire scatter plot to highlight the specified dot.
Each visualization publishes the list of actions it supportsto Snap at registration time.
5.2.3.3 Action Event

Event onAction(action, PKvalue)
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The visualization triggers this event to Snap whenever users perform one of the
visualization's supported actions on atuple. The visualization reports the action name
and the primary-key value of the tuple. For example, when usersclick onadot ina
Spotfire scatter plot, Spotfire reports the select action.

5.2.4 Visudlization Registration

At registration time, each visualization specifies its:

Name: for identifying it to the user, as on the Snap Main Menu.
Description: more detailed text.
Launch string:  specifies how Snap instantiates the visualization.
List of actions. each action is a string, for identification to the user in the Snap
Specification dialog and for use inthe API.
Load method: File, Memory, or SQL (see API Load Procedure).

|deally, developers could register their visualizations with Snap using a registration
user interface to aregistration database.

5.2.5 Programming Effort

Adding Snap’s API to avisualization requires only a small amount of code. First,
there may be some initial overhead in enabling the visualization for communication. In
the current implementation, this means making the visuaization into a COM object.
Fortunately, the popular development tools can do this automatically.

Second, the three API elements must be implemented. Since a visualization already
has functionality to load data, the Load Procedure can smply call that existing code.
Hence, thisis quite smple to add, requiring essentially two lines of code (the procedure

declaration and the call). Likewise, the Action Procedure can use the existing user
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interface code to perform actions. However, additional code may be needed to search
internal data structures to locate the item identified by the given primary-key value.
Corresponding code that searches for items based on user events (mouse clicks) can be
copied and modified. Thisusually requires 2-10 lines of code. The Action Event
simply requires adding the event trigger in the appropriate calback routine of the
visualization's user-interface code, requiring one line of code per supported action.
Also, the data structures may need to be expanded dightly to support the storage of the
primary-key values.

Finally, atrandator procedure may be needed that converts the input data from the
memory format (relational data objects) to the input format of the visualization tool.
However, this could be claimed as a gain, not a cost, because only one such trandator
ever has to be written for each visualization tool. From the users’ point of view, thisis
a big advantage because traditionally users must write their own trandators for each
visualization they use. With Snap they need at most one: to convert their datainto a
relational database. And visuaization developers need to supply only one: to convert
the relational format to their visualization’s format.

To snap-enable the Treemap visualization tool, which was originally developed by
others, required approximately 2 hours of work to add approximately 20 lines of code to
its software (using Borland Delphi’s Object Pascal).

In some cases, access to the source code is not necessary. Some well-designed
component-based visualizations, such as Spotfire (commercial software), aready
support a full suite of methods and events. A simple wrapper program can be written in

Visual Basic (VB) that trandates the Snap API protocol to calsto the visualization
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component. Snap provides atemplate wrapper. Snap-enabling Spotfire required
approximately 10 lines of VB code.

Java and web-based applications can be enabled using Internet Explorer (1IE). For
example, the Hyperbolic-Tree Java applet was enabled using a small VB wrapper to
control 1E, and asimple HTML page to control the Hyperbolic Tree applet using
Javascript.

SAS IMP is an example of avisualization package that could not be enabled well.
Its programming API has many methods, but no events (callbacks). Hence, the Load
and Action Procedures could be implemented in the VB wrapper, but the Action Event

could not. A request has been given to its developers to include action events.

5.3 Coordination

When users coordinate visualizations, snap maintains a graph data structure
representing the visualizations and coordinations. Then, when users invoke an action in
avisualization during coordination operation, the following execution takes place (see
Figure 5.2):

1. Thevisualization notifies Snap of the action and the primary-key value of the

tuple acted on, viaits Action Event.

2. Snap begins atraversal of the coordination graph starting at that visualization

and action.

3. For each visualization encountered in the traversal, Snap invokes the tightly

coupled action on the visualization:
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a. If theactionisnot aload action, then the action is programmatically invoked

directly on the visualization, passing the primary-key value as parameter, via

its Action Procedure.

b. If theactionisload, then the Visualization Manager executes the selection

guery using the primary-key value as the query parameter, and loads the

results into the visualization via its Load Procedure.

For example, in the file-folders example, when users select the folder with primary-

key value “ MyDocs’ in the scatter plot, then Snap calls on the Hyperbolic Tree to select

“MyDocs’. Then for the tabular visualization, Snap executes and loads the results of

the query:

SELECT * FROM files WHERE files.parentFolderID = “MyDocs”

P

Snap-Together Visualization ... _________N\_______.

V oo N Bt I

Dat Action, \Z} Action, Data
a PKvalue PKvalue
Visualization; Visualization,

Figure 5.2: Coordination Operation
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The coordination graph data structure and coordination propagation traversal
algorithm provide the generdity that makes the Snap architecture flexible for
visualizations and coordinations (e.g. third level of flexibility). Users can construct any

possible combination of visualizations and coordinations as needed.
5.3.1 Data Structures

The coordination graph data structure is based on the Snap model, and is composed
of alist of the currently open visualizations and a list of the currently constructed
coordinations. As users construct or delete visualizations and coordinations, Snap adds
and removes from these lists.

Coordination Graph data structure:

List of Visualization structures

List of Coordination structures
Visualization data structure:

Visualization object reference

Relation name

List of boolean marks for each action (used during propagation)
Coordination data structure:

Pointer to Visualizationl structure

Actionl

Pointer to Visualization2 structure
Action2

5.3.2 Algorithm

The coordination propagation traversal agorithm executes the tight couplings and
implements the transitivity property of the Snap model. During coordination operation,
when users invoke an action on a visualization, a depth first traversal of the

coordination graph isinitiated:
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Procedure beginPropagation(visualization, action, PKvalue)
Clear all action marks in all visualizations
Call traverse(visualization, action, PKvalue)

Procedure execute(visualization, action, PKvalue)
If not marked (visualization, action) then
If action = load then
Execute visualization query(PKvalue)
Call visualization.doLoad(query results)
else
Call visualization.doAction(action, PKvalue)
Call traverse(visualization, action, PKvalue)

Procedure traverse(visualization, action, PKvalue)
Mark visualization, action
For each coordination in graph.coordinationList do
If visualization = visualization1 and action = actionl then
Call execute(visualization2, action2, PKvalue)
Else if visualization = visualization2 and action = action2 then
Call execute(visualizationl, actionl, PKvalue)

5.4 |ssues and Tradeoffs

5.4.1 Independent vs. Integrated Visualizations

The Snap architecture is designed to use independent visualization tools. An
aternate approach would be to fully integrate visualizations by custom implementing
them within the context of the coordination system (asin Visage [RLS96], DEVise
[LRB97], Spotfire, etc.). Each approach has corresponding advantages (+) and

disadvantages (-):
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Independent Visualizations

Integrated Visualizations

+ Open system, others can easily add
visualizations

- Closed system, only system developer
can add visualizations

+ Reuses existing visualizations from the
field

- Popular visualizations must be re-
implemented within the system

+ Visualization development unaffected

- Visudizations must use designated
structures

+ Visualizations can be used outside the
system

- Visualizations only work within the
system

+ Clean component-based design,
visualizations insulated via API

- Potential inter-dependency
complexities

+ Consistent coordination model

- Potential coordination inconsistencies

- Use only existing functionality of
visualizations

+ Can add new functionality to
visualizations

- Visudlization user interface
inconsistencies

+ All visualizations implemented with
same look and feel

- Potential performance hit

+ Potentia performance boost from
shared data structures, etc.

- Static coordination model

+ Can add advanced custom functionality
for coordinating dynamic data, edits,
etc.

The Snap architecture employs a component-based approach, in which

visualizations are implemented as individual units rather than integral to monolithic

systems. This programming approach is becoming increasingly popular in commerciad

visualization and other domains due to benefits of modularity, reuse, etc. For example,

AlphaBlox [IDC99] enables rapid deployment of web-based analytical applications by

dropping visualization and data components into web pages.

While Snap works well to coordinate full-fledged feature-rich visualization

applications such Spotfire, the Snap approach steers developers towards implementing

smaller smple visualization components as in the Hyperbolic Trees applet. This

eliminates some of the extra visual clutter of toolbars and menus for each visualization.
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5.4.2 Effort vs. Payoff

In the design of the Snap API, part of the goal is to maximize benefits while

minimizing effort required by visualization developers. A larger and more complex

APl would enable more functionality (e.g. coordinating dynamic data, edits, etc.), but

would require more effort for visualization developers and the disadvantages of the

integrated approach begin to creep in. Hence, when increasing effort, the law of

diminishing returns results in reduced payoff. | believe that Snap finds the sweet spot

where effort islow and payoff return is maximized.

5.4.3 Snap vs. Programming

When constructing coordinated-visualization interfaces, one can either use Snap

(visualization or coordination flexible) or program the interface by hard coding the

desired coordinations between visualizations (data flexible or non-flexible). Each

approach has corresponding advantages (+) and disadvantages (-):

Snap

Programming

+ Non-programmers
(for enabled visualizations)

- Programmers only

+ Quick and easy

- Time consuming and difficult

+ Can make throw-away solutions for
temporary or short-term needs

- Short-term needs go unmet

+ Interfaces are changeable on the fly

- Static, inflexible, dow turn-around

+ Can prototype many options

- Prototypes typically non-functional

+ Robust coordination model

- Prone to mistakes, inconsistencies

+ Guided by Snap model

- Design from scratch

+ Once enabled, visualizations are
reusable in many different interfaces

- Visualizations hard-coded each time

- Potentially disparate visualizations

+ Package in custom user interface

- Bounded functionality

+ Custom functionality as needed




How much effort is saved by using Snap instead of programming a hard-coded
coordinated-visualization interface by hand? It is difficult to measure the number of
lines of code saved because it is not clear what code in the hard-coded interface to
count. What would the programmers be starting with? Snap provides atotal solution
from data to coordinated-visualization interface, that covers alot of functionality.

Y et, even more than the number of lines of code is the significant amount of
consideration and care programmers must employ. Implementing a coordinated-
visualization interface is very tricky. Aninterface with two coordinated visualizations
may be straightforward, but complexity quickly increases with the number of
visualizations and coordinations.

An examination of the Snap’s functionality reveals the amount of complexity that
programmers must consider when implementing a coordinated-visualization interface.
First, programmers must consider the design of the coordination. The Snap model
provides significant guidance to how the coordinations work. Programmers must
implement affordances for actions. Visualizations must be able to notify of user actions
and invoke and respond to actions programmatically. A method is needed to uniquely
identify dataitems. Actions must be propagated to other visualizations. Functions are
needed to relate data items between visualizations. Programmers must keep track of
which visualization initiated the action, ensure that each action in each visualization
propagates to all others as needed, ensure that programmatically invoking actions
doesn’'t generate new actions, and ensure that each action getsinvoked on a
visualization only once. Finaly, data handling is needed for processing, subsetting, and

loading data into visualizations, possibly as aresult of coordinations.
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Naturaly, this processis prone to errors, bugs, incomplete implementations, and
inconsistencies in design. For example, many web designers fail to include bi-
directiondity in overview-and-detail coordinations between frames. Selecting an item
in the overview highlights the item and displays corresponding details in the detail
frame. However, navigating the detail frame using the scroll bar or next/previous
buttons on the page fails to update the highlight in the overview. Thisresultsin
inconsistent state and confusion.

Whereas, Snap opens design capability to non-programmers. This enables the
construction of coordinated-visualization interfaces in many situations where a
requirement for programming would immediately prevent its use. Snap does not
require programming savvy, development tools, knowledge of the visualizations
implementation, etc.

5.4.4 Scalability

The Snap architectural approach of using independent visualizations has a potential
disadvantage in system performance. In direct-manipulation environments, user actions
should result in visual feedback within 100 milliseconds [Shn98]. Hence, in
coordinated-visualization interfaces, propagated actions should occur within 100
milliseconds from the user action invocation. In an integrated approach, all
visualizations can be implemented to use shared data structures and optimized for
coordination operation. However, with independent visualizations, each visualization
instantiates its own potentially-large data structures and may not have been
implemented from the perspective of coordination. This could mean that

programmatically invoking actions on visualizations is slow.
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In general, displaying several visualizations simultaneously is not a problem for
memory and swapping. Modern systems are designed to handle many open
applications and windows. Screen space isthe limiting factor here. However, if
invoking actions on visualizations is ow, then the number of open visualizations may
serve to multiply that delay. Furthermore, a coordination propagation is only as fast as
the slowest visudization involved in the propagation. By default, in the COM
implementation, API calls are blocking. This means that while an action invocation is
executing, Snap is stalled. There are two potential bottlenecks in the API: the Action
Procedure and the Load Procedure.

The Action Procedure may have to perform a search on the visualization’s internal
data structures to locate a tuple by its primary-key value. For naively implemented
visualizations, this requires an O(n) search. For example, Spotfire’'s VB wrapper
executes an O(n) search using Spotfire’s programmer API. Performance tests on a 300
Mhz Pentium computer measures this search at about 1 second per 1000 tuples. This
can be vastly improved using hash tables or other data structures to map primary-key
values to Spotfire data-structure indices or pointers.

A potentia solution to this problem would be for Snap to manage hash tables for
each visualization. After loading arelation, avisualization could perform asingle
traversal of itsinternal data structure, reporting each primary-key value and internal
pointer pair to Snap. Snap could store these in a hash table. Then, when invoking an
action on avisualization, Snap could provide a direct pointer to the tuple.

The Load Procedure is used to initially load data into a visualization. Slow

performance here is acceptable. However, it is aso often used to repeatedly load
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different datainto a visualization during a drill-down coordination. Fast performancein
this case is needed to enable usersto quickly explore aggregates. Again, testing
Spotfire (a known slow loading program) on the same computer with the web log data
(about 25,000 tuples, 10 attributes), Spotfire loads approximately 1000 tuples per
second with a minimum of about 1 second. Hence, displaying the whole relation isa
significant delay. However, in a drill-down coordination, only a fraction of the datais
loaded. Users can explore a million tuple relation using aggregation and drill-down, by
displaying 1000 aggregates in one Spotfire plot and 1000 tuples of a selected aggregate
in another plot. That resultsin a1l second delay for each aggregate.
When dealing with large relations or slow visualizations, there are some potential
solutions to help users avoid long unwanted delays.
Warning: The textual list visualization displays a warning message if it
attemptsto load a relation of more than 200 tuples. Users have the option to
cancel the load entirely.
L oose coupling: Instead of loading immediately, a low visualization could
simply indicate that it has become out of date with respect to coordination.
Then, users could manually trigger an update when desired.
Each of these could be implemented within Snap as a general solution. Users could

control these options through the Snap user interface.

5.5 Implementation Details

Snap is currently implemented in the Windows platform. It is based on the
Microsoft COM/ActiveX model for communication in the API. Visuadlizations are

COM objects, exposing the visualization APl as methods and events. Snap creates and
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controls visualizations using OLE automation. It uses the Windows API and the
visualization’s window handle to insert the snap button into each visualization and to
track window resizing for saving and opening visualization groups.

Snap accesses ODBC databases using the Microsoft DAO object model. This
allows Snap to extract schema information, execute queries, and extract data. Snap can
reliably extract table and query information, but can retrieve join relationship
information for only some database formats. Snap has been used with Microsoft Access
and Oracle databases. For Access databases, Snap instantiates the Access GUI to alow
users to edit and manipulate the database. For Oracle and others, Snap provides a
simple SQL query text editor.

Snap isimplemented in Visua Basic, an idea environment for working with COM.
There are four primary code modules (Figure 5.3):

Snap Menu: implements the Snap Menu, and visualization registration.
Database Manager: handles database access, querying, schema extraction.
Coordination Manager: implements the Snap Specification dialog,
coordination data structures and propagation agorithm.

Visualization Manager: handles communication with visuaizations, and
implements the snap button. Instantiated for each visualization.

Additional modules handle the user interfaces and functionality for saving groups,
history keeping, shopping basket, drag-and-drop data extraction, and search box. There
is aso the implementation of a few of the visualizations (text list, table, outliner) and

wrappers for others. The compactly designed Snap code is on the order of 2000 lines of
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VB code, not including user interface properties and layout definitions. The

implemented visualizations and wrappers are an additional 2000 lines,

Database

Database

Snap
Menu

/

5.6 Extensions

The Snap software architecture lays out a foundation on which several interesting
extensions could be built.
5.6.1 Packaging and Deploying

One of the primary uses of Snap isto allow designers or data disseminators to
construct coordinated-visualization interfaces for deployment to other users. Snap has

the capability to save coordinated-visualization groups. But to truly enable deployment,

Visualization
Managers

Coordination
Manager

Visualization

Figure 5.3: Software modules

amechanism is needed to package saved groups as standalone executables.
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Essentialy, Snap could become the ‘Visual Basic' of information visualization.
Designers could quickly construct an interface making use of third party visualization
components, and essentially compile it into an executable containing only the necessary
visualizations and functionality for coordination operation.

Licensing issues with commercial visualizations could be handled in the same way
that VB handles commercial controls. Designers purchase the visualizations, and can
distribute them in their constructed interfaces. But users of the constructed interfaces,
cannot switch to ‘construction mode’ (VB ‘design mode’) to make new interfaces with
the commercial visualizations.

5.6.2 Collaboration

The Snap architecture provides capabilities that could support collaborative
visualization. There are two forms of collaboration with respect to time: synchronous
and asynchronous.
5.6.2.1 Synchronous Collaboration

Synchronous collaboration refers to multiple users working together at the same
time. Often, the usersare at different computers and locations.

When coordinating independent visualization tools with Snap, there is absolutely no
reason why the visualizations have to be running on the same computer. Snap could be
used to synchronize information exploration on multiple users screens (Smilar to Suite
[DC95]). One user could explore and point out interesting phenomena in the data while
other users at remote locations watched. In fact, different users could use different

visualizations according to their preferences (similar to RENDEZVOUS [Hil92]).
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Snap provides avery efficient communication protocol that could easily be
transported over the internet. In fact, COM aready has support for remote procedure
calls and distributed computing called DCOM. The Snap API could simply be invoked
on visudizations running on remote machines.
5.6.2.2 Asynchronous Collaboration

Asynchronous collaboration refers to multiple users working together but at
different times. Snap’s capability for saving coordinated-visualization interfaces and
history keeping could be used to support this type of collaboration too. The history
keeping could be used to easily save the current state of exploration during coordination
operation. This could then be published so that other users could see what has been
discovered, similar to LiveDocs [MHGOO]. In addition, the full history could be used to
create animations of exploration for other users, asin SmPLE [PRR99]. For example,
a professor could navigate through a scientific database to show severa important
phenomena, and then send out the history to students to replay for homework. Again,
Snap provides avery efficient mechanism to save and distribute such histories along
with the specification for the saved interface.

5.6.3 Dynamic Data Consistency

Some visualizations may allow usersto edit the data, such as adding, deleting, or
renaming afile in the file-folders example. Snap could be extended to coordinate data
consistency between visualizations in the face of changing data. An additional
procedure could be added to the API to notify of changes to individual tuples. 1deally,

visualizations could reload only changed tuples without reloading the entire relation.
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This capability might also enable the display of dynamic databases, as in stock
market applications or air traffic control. If the data update rate islow (e.g. changing a
few tuples per second), Snap could update visualizations with changing data values.
However, further research is needed to explore specialized architectures that can scale
up to high data update rates.

5.6.4 Integrating into Operating System

While the Snap architecture is currently implemented as a standalone application, it
could be integrated into data systems or operating systems. For example, Snap could be
integrated into the ODBC architecture in the Windows operating system. The Snap
Visualization API could be adopted into the current ODBC API standard. Snap’s GUI
could become part of Windows, and the snap buttons part of the window decorations.
Then, ODBC compliant applications could be used as snap-able visualizations.

This approach has several mgor benefits. ODBC benefits by adding this powerful
new feature. Snap benefits by joining an existing strong standard and by potential
improved performance due to integration. Visualizations benefit by simplifying
development due to a single unified standard. This approach might also enable more

applications, such as drawing from multiple distributed databases.
5.7 Summary

The Snap software architecture enables flexibility in data, visualizations, and
coordinations. Itsvisualization APl enables developersto easily snap-enable their

independent visualizations. The data structure and algorithms are based on the sound

Snap model. The architecture clearly demonstrates major advantages (and some
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disadvantages) over programming and the fully integrated approach. It provides a solid

foundation for potent new future directions.
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Chapter 6:
Evauation of Coordination Construction
and Operation

Studying the use of Snap is important for two reasons:
To evaluate the usability and benefit of the Snap system itself and discover
potential user interface improvements.
To gain a deeper level of understanding about users' ability to understand,
construct, and operate coordinated-visualization strategies in general.

Two separate studies were undertaken to evaluate two distinct aspects of

coordination [NS00b]:

1. Construction: First, can users successfully construct their own coordinated-
visualization interfaces?

2. Operation: Second, can users then operate the constructed coordinated-

visualization interfaces to explore information beneficialy?

6.1 Evaluation of Coordination Construction

The goa of the first study is to determine if users can learn to construct coordinated-
visualization interfaces and how difficult it is for usersto construct them, in terms of
success rate and time to completion, and to identify cognitive trouble-spots in the
construction process. Hence, this study examines the flexibility that Snap provides.

Can users grasp the concept of coordinating two independent visualizations together to

form a unified browsing tool? What cognitive issues are involved, how much training

95



isrequired, how do users backgrounds affect performance, and can relatively novice
users construct powerful exploration tools in a short time? This study also reveals
potential Snap user interface improvements.

The Snap-Together Visualization system is used to examine these issues. Currently,
Snap employs a 2-step approach to constructing coordinated-visualization interfaces.
First, users drop relations into visualizations. Second, users snap the visualizations
together to coordinate actions between them. For this study, Snap uses Microsoft

Access GUI to enable usersto create and edit queries.
6.1.1 Procedure

Six subjects participated, one at atime. Four of the subjects were employees of the
U.S. Census Bureau, three of whom were data analysts or statisticians, and one a
programmer. The other two subjects were computer science graduate students on
campus.

First, background information was obtained from each subject concerning their
occupation and experience with: census data, computers, databases, Microsoft Access,
visualization tools, and programming.

Then, each subject was trained on Snap-Together Visualization. The training
program consisted of:

1. A quick demonstration of Snap by the administrator to give the subject an

overview and motivation.

2. Review of various background concepts including:

Relational database concepts including: tables, records, fields, primary keys,

foreign keys.
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Database query conceptsincluding: projection, selection, sort, join.
Snap model concepts.

3. Detailed instruction on the use of Snap and Microsoft Access. The subjects
walked through the construction of a few variations of coordinated-visualization
interfaces for browsing census data. This demonstrated how to construct
common types of coordinations.

Then, when confident to continue, each subject began the testing phase. Subjects
were given a database of census data for the U.S. states and counties, and Snap
(including a set of Visualization tools) and Microsoft Access. Testing consisted of three
exercises in which subjects were asked to construct a coordinated-visualization user
interface according to a provided specification:

Exercise 1: Thefirst specification consisted of a printed screenshot of the desired
user interface (Figure 6.1). Theinterfaceisapair of textual visualizations with
overview-and-detail coordination for browsing state data. Thistrial was designed to be
fairly easy, to be similar to those constructed in the training, and to build confidence.

Exercise 2: The second specification was aso a screenshot (Figure 6.2), but more
difficult. It usesatextual list, Spotfire scatterplot, and tabular visualization to browse
census data for states and counties. It involved a one-to-many join relationship, so that
selecting a state would display data for that state’s counties.

Exercise 3: Thefina specification consisted of atextual description of the
browsing task that the constructed interface should support: “Please create a user
interface that will support usersin efficiently performing the following task: To be able

to quickly discover which states have high population and high Per Capita Income, and
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examine their counties with the most employees.” Thistrial was designed to test if
subjects could think abstractly about coordination, think task-oriented, think in terms of

user-interface design, and to allow for potential creativity and variation.

&. List - 45 StateData M= =
Load | Wiew | Snap | _Load | view | SnEP—I
Alabama State: Maryland A
AMlaska Population: 4781468
Arizona Families: 1256327
Arkansas Households: 1745342
California Ifale Yo 48.5%
Colorado Female %o: 51.5%
Connecticut Urban % 81.3%
Delaware Average Age: 331
Florida HE Diploma % T3.4%
Georgia College Degree %0 317
Hawa English Zpeaking %4 34,30
Tdaho Average Commute Time: 33
Tllinois Carpool Commute %0: 15.2%
Indiana Public Transportation %4 2.1%
Towa Per Capita Income: 17730
Kanszas Median Family Income: 45034
Eentucky Median Household Income: 39386
Louisiana No Income Households %o 15.3%
Maine Avrerage Persons per Family: 3.81

] Average Workeers per Family: 1,38 J
Wazsachusetts Housing TThits: 1891917

Michigan Wacancy %o 3.2%

Montana Average Bedrooms: 273

Mebraska Average Persons per Ut 273

Nevada Iedian Value: 115500

Wew Hampshire Iledian Mortgage: 918

New Jersey Iedian Rent: 548

New Iexco Rent % Household Income:  25.4

Mew York Flag Dezcription: The MWarvland flag contains the farmily
North Carolina crest of the Calvert and Crossland families. Maryland was founded
Worth Dakota as an English colony m 1634 by Cecd Calvert, the zecond Lord
Ohio Baltinore. The black and Gold designs belong to the Calvert family.
Oldahotna The red and white design belongs to the Crossland farnily.

Oregon

Pennsylvana

Ehode Island State: Massachusetts

Zouth Caroling Population: 6016425

South Dakota Families: 1525198

Tennessee Households: 2244408

Texas Iale %o 48.0%

TUtah Fermale %o 52.0%

WVermont Urban % 34.2%

Wirginia Average Ape: 345

“Washington H3 Diploma % 30.0%

“West Virginia College Degree %0 34,50

“Wizconsin English Zpeaking %4 TA.0%

TWyotming Average Commute Time: 28 =

Figure 6.1: User interface specification for exercise 1
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Finally, subjects were given the opportunity to freely explore the system, describe

Figure 6.2: User interface specification for exercise 2

problems with the Snap user interface, and offer suggestions for improvement.

The following variables were measured:

Subjects background information.

Learning time.

Success (y/n or how close to success).

Time to completion.

This study also observed:
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Cognitive trouble spots (in training and test trials).
Snap user interface problems.

6.1.2 Results

From the background survey, none of the subjects except the Census programmer
had experience with Microsoft Access or SQL, and little exposure to relational database
concepts. The Census analysts had significant experience with census data, but
generally used flat files or spreadsheets. Each had experience with only basic
visualization tools (e.g. Excdl charts).

All the subjects completed the training phase in 30-45 minutes. They all were able
to complete all three exercises, with occasional help in wading through Access' s visual
guery editor. They accomplished exercise 1 in 2-5 minutes, and exercise 2 in 8-12
minutes. They spent 10-15 minutes on exercise 3 until they were satisfied with their
solution.

In general, the subjects were quick to learn the concepts and usage, and were very
capable to construct their own coordinated-visualization interfaces. Several stated that
they had a sense of satisfaction and power in being able to both (@) so quickly snap
powerful exploration environments together, and (b) with just a single click effect
exploration across several visualizations and see the many parts operate as a whole.
They reported that it made exploration seem effortless, especially in comparison to the
standard tools they are used to. Asto the subjects general reaction to Snap, they
clearly showed enthusiasm. There may have been social pressure to respond positively,
since the subjects knew that the administrator of the experiment was also the developer

of the Snap system.
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There was an interesting difference between the reaction of the data analysts and
programmers (census programmer and computer science students). The programmers
commented enthusiastically about the component based programming approach, and the
ability to rapidly construct new interfaces. Whereas, the data analysts commented about
being able to explore the data thoroughly and efficiently. They did not seeit as
construction, but as exploration.

In fact, the data analysts performed better than the programmers. They learned the
database concepts quicker, completed the exercises quicker, and constructed creative
interesting new interfaces. Perhaps they were more motivated by the use of examples
involving Census data. Even during the training, they were aready trying variations of
coordinations and exploring the data. Two pointed out various anomalies in the data.
After finishing the exercises, these subjects each voluntarily stayed for an additional
hour to discuss and try other examples. All four Census subjects expressed desire to use
Snap in their work. Infact, a collaborative effort has been undertaken.

An important result was the creativity and variation evident in the subjects
solutions to exercise 3. Subjects were able to design user interfaces that made cognitive
sense to their own perspective on the data. They used a mixture of visualizations
including tables, scatter plots, and lists. For example, while the expected design was
two scatter plots with a drill-down coordination (one-to-many, select to load), one of the
data analyst subjects augmented this design with a pair of lists for the state and county
names. The subject stated that this would help to see which state and county was
currently selected in the scatter plots, and also alow for accessing states by name which

would be difficult with the scatter plot alone. Another subject who preferred to see
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numeric values placed the counties in a table sorted by number of employees. One had
even constructed an interface using the Treemap visualization, which is generally
considered a more advanced visualization difficult for novices. In addition to variation
in user interfaces, subjects made use of the transitive property of coordination to
coordinate visualizations in different pairings.

Overall, subjects did not have problems grasping the cognitive concept of
coordinating visualizations. They were able to generate designs by visual duplication
and by abstract task description. Results from exercise 3 demonstrated that these users
were able to design appropriate coordinated-visualization interfaces. These
encouraging results indicate that users can handle a level of design in which they piece
together pre-designed components to construct a larger design. Snap apparently finds a
middle ground between usage (the realm of end-users) and design (the realm of
experienced HCI practitioners) appropriate for these data-savvy users. This validates
the primary benefit of Snap, its flexibility.

The problems subjects did have were in manipulating the Snap and Access user
interfaces. Creating queries was by far the most difficult part of the construction
process for the subjects. Learning to use Access and its query editor isachallengein
such a short time.

6.1.3 User Interface | ssues

Understanding the basic Snap model was critical to construction. However, the
current Snap user interface and the form fill-in style of the Snap Specification dialog
does not reflect this model well. This study identified four major trouble spotsin the

interface:
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1. Theterminology of the snap-able actions “select” and “load” caused some
confusion. It was not clear enough that these represented user interface actions.
Apparently some subjects were confusing “select” with the database query sense
of selection.

2. For simplicity, Snap uses the Access query editor. However, this made
constructing a drill-down coordination (one-to-many, select to load) very
laborious, and subjects sometimes got lost in the 3 step process. writing the
parameterized query, opening the query in avisualization, and specifying the
coordination.

3. When constructing interfaces of three or more visualizations, subjects
sometimes forgot what coordinations they had constructed between
visualizations. They had to recheck each pair.

4. When subjects weren't quite sure what coordinations they should construct, they
would often “just try stuff” and see how it behaves. A snap debugging mode is
needed to help them see how the tight-couplings propagate between the
visualizations.

Redesigning the Snap user interface around an overview diagram would solve these
problems. A node and link diagram could represent the visualizations as nodes and
coordinations as links between them. This overview could become the primary user
interface for constructing, editing, examining, and debugging coordinations. Such a
visual representation with direct-manipulation interaction would closely reflect the

conceptual Snap model. Hence, this would likely reduce users’ training time as well.
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In addition, while the ability to create queries with Access enables more complex
scenarios, it is a burden for common simple coordinations. Basing the Snap
Specification dialog on the database schema diagram would more closely match users
mental model of the data. This would simplify constructing drill-down coordinations
since Snap could generate the parameterized selection queries automatically. For
projection queries, expanding the Snap Menu window to include attribute names would
allow usersto directly select desired attributes to load into visualizations. Together,
these modifications would obviate the need to use Access to manually create queriesin
common cases. Thiswould further reduce training time to almost nothing.

Also, window management is a serious problem. Subjects spent considerable
amounts of time rearranging visualization windows on the screen into nicely tiled
layouts. Others have proposed solutions to this general problem (see [KS97] for a
review).

6.2 Evaluation of Coordination Operation

The goal of the second study is to measure the added value of coordinated
visualizations over independent or single visuaizations in terms of user task times and
subjective satisfaction for browsing large information spaces. The visual feedback
across visualizations could be distracting or disorienting for users. But if thereisa
benefit, what is its magnitude?

While there are many possihilities, this study examines the overview-and-detalil
coordination. This coordination has two enhancements over the traditional single-

visualization detail-only display:
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1. Overview: A display enhancement that depicts the full breadth of the datain a
compact form, like atable of contents.

2. Coordination: An interaction enhancement that allows usersto select an item
in the overview to scroll the detail to that item. Likewise, directly scrolling the
detail highlights the current item in the overview.

Chimera’ s [CS94] result seems to indicate that overview-and-detail should perform
better than detail-only. But, if so, which enhancement is the important factor that
causes improved user performance? Isit (a) the information displayed in the overview,
or (b) the coordination between the overview and detail?

Hence, the purpose of this study is not to compare a coordinated user interface with
the best dternative (see section 2.4 for such studies). Instead, the purpose is to further
understand coordination and its users. Specifically, why and how much does the
overview-and-detail coordination improve over detail-only, in the context of asingle
popular type of navigation (one-dimensional scrolling) for browsing tasks? What isthe
value or detriment of visualizations that are not coordinated? What are users' reactions

to these interfaces?
6.2.1 Independent Variables

User interface: A simple textual user interface, constructed with Snap, uses the
overview-and-detail coordination for browsing population statistics of 45 of the U.S.
states from the Census Bureau’'s 1990 census. Three treatments: (see Figure 6.1)

1. Detail-Only: A single scrolling textual report of the states, in alphabetical

order, and their data.
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2. No-Coordination: The same visualization as Detail-Only, with the addition of
atextua overview tiled on the left. The overview displays an alphabetical list of
the names of the states. The visuaizations are not coordinated.

3. Coordination: The same visualizations as No-Coordination, with the addition
of coordination between them. In Snap, thistightly couples the overview’s
select action to detail’ s scroll action.

At firgt, the inclusion of the No-Coordination user-interface treatment might seem
spurious. However, it isincluded for two important reasons: First, No-Coordination
will reveal which aspect of the coordinated-visualization interface approach is most
critical: the multiple visualizations or the coordination. Second, designers actually do
build such systems that have uncoordinated visualizations. Microsoft Accessisan
example. Uncoordination also occurs when using multiple tools by different
developers. For example, HCIL members regularly use Spotfire, Excel, Access, and
Netscape to examine the HCIL web logs [HS99] and technical-report database.
However, they are not coordinated. Thisis precisely the problem Snap was designed to
solve. Hence, it isimportant to gather data on No-Coordination approaches as well.

Task: A variety of browsing tasks, using a question and answer approach. Nine
treatments:

1. Coverage-yes. “ Doesthe information include statistics about the state of

Ohio?" where Ohio isincluded in the data.

2. Coverage-no: Same as Coverage-Y es, but where the state is not included in the

data.

3. Overview patterns: “How many states in the list begin with the letter M7’
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4. Visual lookup: “What is the population of the 6™ state from the bottom of the
list?

5. Nominal lookup: “What isthe population of Georgia?’

6. Compare-2: “Which of the following states has higher Median Family Income:
California or Washington?’

7. Compare-5: “Which of the following 5 states has higher Median Household
Income: Florida, Texas, Louisiana, Alaska, or Oregon?’

8. Search for target value: “ Which state has Average Commute Time of 317’

9. Scan dl: “ Which state has the highest College Degree %7’

Thetasks are listed here in order from easy to difficult based on the experiment

results. The actual order they were administered was. 5,1, 6,8, 3,7, 2, 9, 4.

6.2.2 Dependent Variables

User performancetime: Timeto correctly complete each task, not including
reading the task question.

User subjective satisfaction: Subjectsrated their satisfaction with each interface
on ascale of 1 to 9 on four categories (with scales): comprehensibility (confusing to
clear), ease of use (difficult to easy), speed of use (dow to fast), overal satisfaction
(terrible to wonderful).

6.2.3 Procedure

The 18 subjects were students and staff from campus, and were paid $10 to
participate. A within-subjects design was used. Each subject used all three user
interfaces to perform all nine tasks. To avoid repetition, three different but similar sets

of task questions were used. To counterbalance for potential order effects, all 6 possible
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permutations of interface order were each assigned 3 times. The three task setswere
not permuted.

For each user interface, subjects were first trained in its use and performed several
practice tasks before beginning the timed trials. After finishing all three interface
treatments, subjects then completed the subjective satisfaction questionnaire.

6.2.4 Results

Analysis of the datareveals a strong and interesting result. Figure 6.3 showsthe
mean user-performance times for each task and interface. A 3x9 within-subjects
ANOVA revealsthat the user interface effect, task effect, and interaction effect are all
statistically significant at p<.001. Nine one-way ANOV Asrevedl that user interface is
significant for al 9 tasks at p<.001 (see Appendix C section C.2.4 for details of the
means, standard deviations, F values and significance levels).

Finally, individual t-tests between each pair of user interfaces within each task
determine performance advantages. For tasks 1, 2, and 3, the Coordination and No-
Coordination interfaces are both significantly faster than the Detail-Only interface at
p<.001, but not proven different from each other. Whereas, in tasks 5 through 9,
Coordination is significantly faster than both No-Coordination and Detail-Only at
p<.001, and the latter are not proven different from each other. However, while task 4
(Visual lookup) could be included in the second group of tasks, it may classify asanin-
between case. For thistask, Coordination is significantly faster than the other two user
interfaces at p<.005, but No-Coordination is marginally significant over Detail-Only at

the p<.07 level.
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Figure 6.3: Average user performance time for tasks.
The coordinated interface has significantly faster performance in most cases.

First, Coordination results in mgjor improvement in user performance time over
Detail-Only for al tasks. On average, Coordination achieves an 80% speedup over
Detail-Only for easy tasks and 50% for difficult tasks. The least improvement, about
33%, isintask 6 (compare-2). Thistask had the lowest interaction-time to thinking-
time ratio.

The No-Coordination interface results in a nearly binary pattern, and is likely the
source of the interaction effect between task and interface (see Figure 6.4). For tasks 1-
3, No-Coordination performs faster than Detail-Only, and its averages are similar to
Coordination. Inthese tasks, subjects only needed the information in the overview to

accomplish the task. Whereas, in tasks 5-9 the Coordination interface is faster than No-
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Coordination, and the averages for No-Coordination are similar to Detail-Only. Inthese
tasks, subjects needed to access the details of the data. Observing subjects behavior as
they performed these tasks revealed that when using No-Coordination they tended to
ignore the overview. The lack of significant difference between No-Coordination and
Detail-Only in these cases does not imply that they are necessarily the same. It is
conjectured that they are the same due to the observation of the users. In any case, what
isimportant isthat Coordination is significantly faster than No-Coordination in these
cases. Hence, in tasks where access to details is important, undoubtedly a majority in

common applications, coordination is absolutely critical.

Tasks
1-3 4-9
Detail-Only Detail-Only
Slower Group No-Coordination
No-Coordination
Faster Group Coordination Coordination

Figure 6.4. User interfaces grouped by user performance in tasks.
The faster groups are significantly faster than the slower groups at p<0.005.

Task 4 (Visual lookup) might classify as an in-between case. With No-
Coordination, many subjects determined the name of the target state from the overview,
then scrolled to it in the detail view. With Detail-Only, they scrolled to the bottom, then
scrolled back up while counting, and sometimes lost track. Apparently, thisis a case
where just having the contextual information of the overview was somewhat
advantageous. Even so, Coordination was still a major improvement over both.

In fact, an important result is that Coordination performance times for lookup tasks

(4 and 5) are in the same extremely fast range as overview tasks 1-3. Whereas, No-
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Coordination times drop to Detail-Only level performance. When looking up detalls,
perhaps the most common task, Coordination especially excels.

In general, overview-and-detail coordination greatly improved performance over
detail-only scrolling. Clearly, amajor advantage of the coordination is the ability to
directly select atarget in the overview to immediately locate its details. Whereas, the
scrolling interfaces requires careful searching while dragging the scroll bar thumb.
Observing the subjects as they performed the tasks revealed that they were more likely
to explore when using Coordination. For example, in the Compare-2 and Compare-5
tasks, subjects were more willing to recheck their answers with Coordination. With
Detail-Only and No-Coordination subjects spent extra effort to mentally alphabetized
the 5 states to compare so as to minimize their scrolling effort. Severa subjects
reported verbally and on the questionnaire that scrolling was difficult. Thisis surprising
since scrolling is a fundamental component of current GUI systems and perhaps the
most common navigational method. The Coordination interface could be considered an
improved scroll bar that facilitates exploration.

6.2.5 Subjective Satisfaction

With the satisfaction data (Figure 6.5), a 3x4 within-subjects ANOV A indicates that
user interface, subjective satisfaction category, and interaction effect are al significant
at p<.001. One-way ANOV As for each category indicate that Comprehensibility, Ease
of use, Speed of use, and Overal Satisfaction are al significant at p<.001 level (see
Appendix C section C.2.4 for details of the means, standard deviations, F values and

significance levels).
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Figure 6.5: Average user subjective satisfaction.
The coordinated interface rates significantly higher in all four categories.

Analyzing each pair of interface treatments within each category revealsthat all
pairs are significant at p<.001 except: Detail-Only and No-Coordination in Ease of Use
are significant at p<.05 and the same pair in Comprehensibility are not proven different.

Coordination is a clear winner, gaining nearly twice the rankings of Detail-Only and
No-Coordination in Ease, Speed, and Overall. On average, subjects ranked
No-Coordination 1-2 points higher than Detail-Only, except in Comprehensibility they
ranked about the same. While completing the survey, severa subjects stated that

No-Coordination was only useful for the overview tasks.
6.2.6 Answers

Returning to the research questions: Which factor is more critical, the overview
information or the coordination? The answer is nearly binary. If only the overview

information is needed, then naturally coordination is not necessary. But for the
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important cases where access to details is needed, then coordination is everything.

What is the magnitude of the benefit? For the three most difficult tasks, the coordinated
version cut taskstime in half. This study aso reveals the importance of good overview
design to enable common questions to be answered directly from the overview.

When first presented with the No-Coordination interface, many subjects
immediately attempted to click in the overview expecting the detail view to change,
even when they had not yet seen the Coordination interface. Hence, not only were users
not distracted by this coordination, but they wanted and expected it! They were visibly
distraught when the interface did not behave as they hoped. Even more, they were
clearly elated when presented with the Coordination interface, as the subjective
satisfaction data indicates. Subjects expressed appreciation for interactive coordination

that sped their tasks.

6.3 Combined Analysis

Combining the results from these two studies may indicate the breakpoint at which
time savings during coordination operation surpass coordination construction time. In
exercise 1 of the first study, subjects constructed the same user interface as was used in
the second study for browsing tasks. The time cost of constructing the coordinated
interface was about 2-5 minutes, while it saved about 0.6-1.5 minutes over the standard
Detail-Only interface for the more difficult tasks. Hence, after just afew tasks, users
are adready reaping savings when constructing their own coordinated interface. Of
course, it is difficult to factor in learning time and effects of sharing saved interfaces.
Nevertheless, this simple analysis reveals that customized information visualization is

within the grasp of data users.
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6.4 Summary

Overadll, the overview-and-detail coordination offered a 30-80% speedup over
detail-only scrolling for all nine user tasks. While the uncoordinated overview was
sufficient for overview only tasks, coordination was critical when accessing detalils.
Users understood and appreciated this coordination.

Data-savvy users successfully and enthusiastically designed and constructed
coordinated interfaces of their own. Users showed creativity and variation in their
designs. These users are clearly ready for and strongly desire significantly more
advanced tools than standard detail-only, uncoordinated, or hard-wired systems. While
these cognitive issues were examined within the Snap platform, | believe that these
results will apply to similar coordinations and flexibility in other systems.

For practitioners, these studies indicate that Snap can be used in its present form, or
that the Snap coordination concepts can be implemented into other systems, to greatly
enhance the user experience.

For researchers, severa open questions require further study. Other types of
coordination, such as brushing and linking, and drill down need to be empirically
evaluated. Inthis study, the use of the No-Coordination user-interface treatment was
very successful in identifying the interaction effect between task and coordination.
Future studies should exploit this same approach. Also, a browsing task taxonomy is
needed for the task independent variable. This study used a variety of exploration tasks,
but there may be othersto consider. Finally, additional evaluation will be needed to
examine the effects of Snap user-interface improvements identified in the study on

construction.
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Chapter 7.
Conclusion

Snap-Together Visualization is a conceptual model, user interface, software
architecture, and implemented system that allows data usersto rapidly construct
customized coordinated-visualization interfaces without programming. Users can
dynamically mix and match a variety of visualizations on the fly, and specify common
coordinations such as brushing and linking, overview and detail, and drill down.
Visualization developers can easily snap-enable their visualizations using a smple AP,
allowing usersto coordinate them with many other visualizations.

Empirical studies of Snap revealed benefits, cognitive issues, and usability
concerns. Data-savvy users successfully, enthusiastically, and rapidly designed
powerful coordinated-visualization interfaces of their own. An overview-and-detall
coordination reliably improved user performance by 30-80% over detail-only and

uncoordinated interfaces for most tasks.

7.1 Contributions

This research on Snap-Together Visualization contributes six maor innovations:
Conceptual model: aformal model of visualization coordination based on the
relational data model and graph model that provides a sound underlying theory
and alanguage for specifying coordinations.

User interface: auser interface for constructing coordinated-visualization

interfaces without programming.
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Softwar e architecture: an architecture for coordination operation that easily
integrates independent visualizations using a smple API, enabling flexibility in
data, visualizations, and coordinations.
Empirical evaluation: an evaluation of users ability to construct and operate
their own coordinated-visualization interfaces.
Implementation: an implemented system that realizes the model, user
interface, and architecture.
Flexibility framework: aconceptual framework that helpsto lay out the space
of coordinated-visualization systems based on their level of flexibility in data,
visualizations, and coordinations.

Significant evidence validates Snap as both:
Useful: aplethora of examples of Snap usage demonstrate its usefulness and
breadth of applicability (Appendix A). At HCIL, snap has been used in several
research projects to explore possibilities, and is currently in use at the Census
Bureau to expand data visualization capabilities. For example, Fredrikson
[FNP99] used Snap to explore approaches for aggregation strategies by
temporal, geographical and categorical attributes. Snap has aready had
significant implementation impact at several organizations including the Census
Bureau, Spotfire, WestLaw, and HCIL.
Usable: user studies indicate that Snap is quite usable with training, and user
interface improvements have been outlined that will increase its usability and

substantially reduce training requirements.
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7.2 Uses

7.2.1 Users

Snap can be used for severa different purposes. Data users can explore their data
by constructing custom visualization user interfaces. User interface designers can
quickly prototype many different variations of interfaces, and produce interfaces for
data dissemination. Researchers can collaborate by combining their visualizations.

Snap overcomes a serious problem in information visualization research: the
isolation of visualizations. Researchers have created a variety of good visualizations,
which unfortunately are not coordinated. This makesit difficult for researchers to apply
and build on each others work. Snap multiplies the power of visuaizations by enabling

them in more powerful coordinated-visualization interfaces.
7.2.2 Systems

The Snap model, user interface, and architecture could be employed in a variety of
systems. The current Snap implementation focuses on easily enabling the integration of
independent visualization tools from the field. To further this goal, Snap and its API
could be integrated into a data standard such as ODBC to provide universal support and
acloser coupling to data services.

Snap could also be implemented within integrated visualization systems such as
Datadesk, Spotfire, Visage, DEVise, Access, and Excel. These systems provide users
with atoolbox of cleanly designed visualization components that users could coordinate
for exploring data within the system.

Snap could also be used in rapid-application-development (RAD) systems such as

Visual Basic. Thesetools aready enable pseudo-programmers to easily manage data
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schemas and load data into simple visualization components, all using the RAD GUI
(e.g. without actually programming). Snap capability would be an ideal next step to

enable the users to also coordinate the visualizations with programming.

7.3 Benefits

Snap has many benefits. For visualization researchers and developers, Snap:
Reuses visualizations. Each visualization needs to be developed only once.
Simplifies visualization development. Developers can focus efforts on their
primary visualization, and use Snap to incorporate supporting visualizations.
Eliminates the need to program coordinations.

Steers researchers to more rigorous identification of the purpose and strengths of
each visualization. Inwhat situations should a certain visualization be used?
Provides a platform for studying coordination and its users.

Provides an API that is useful for other applications too, such as history keeping
and collaboration.

For users and interface designers, Snap:

Provides instant user interfaces for databases, without programming.
Offersflexibility in data, visualizations, and coordinations, to accommodate
varying data, tasks, and users.

Enables rapid prototyping.

Offers advantages of coordinated-visuaization interfaces, including improved
user performance.

Enables access to many visualizations, and saved groups shared by others.

Standardizes data format.
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Provides history keeping, data extraction by drag-and-drop, shopping baskets,

etc.

7.4 Limitations and Future Work

The limitations and potential future extensions to Snap have been discussed in each
of the major chapters. The Snap model focuses on common types of coordinations
discovered through experience. These are coordinations for selecting, navigating, and
loading data based on discrete data items. Example coordinations include brushing and
linking, overview and detail, drill down, synchronized scrolling, and details on demand.
Currently, the Snap model is not well suited for attribute-based spatial coordinations of
continuous regions. Snap does not yet address other types of coordination such as
consistency of dynamic data across visualizations, data mining, or collaboration.

The Snap model could be extended with multiple selection for unions and
intersections in drill down coordinations, and could be augmented with attribute-based
tight couplings for spatial coordination and data consistency coordination for editing.
The Snap user interface could be improved with coordination overview diagrams and
the Data Compass to reduce user training and enhance usability. The Snap architecture
could be extended with additional coordination controls to increase scalahility, the
ability to package distributable coordinated-visualization interfaces after construction,
and collaboration features. Further evaluation of Snap is needed to study brushing-and-
linking and drill-down coordinations, and measure benefits of potential Snap user-
interface improvements. In addition, since Snap places significant design capability in
the hands of users, guidelines are needed to help them design appropriate coordinated-

visualization interfaces for their data.
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In the bigger picture, Snap could provide a solution to arising new problem on the
web. Larger databases are increasingly used on the web. With applications such as e-
commerce and warehousing, more of the web is becoming data driven. XML ison the
rise. Yet, user interfaces on the web are improving slowly. Designers struggle to use
frames to provide more advanced coordinated interfaces. Unfortunately, however, the
hypertext model is not an appropriate model for coordination. It is uni-directional and
embedded inthe data. XML provides some relief, since it separates data from
presentation, but coordination is missing. Snap can provide the missing link (pun
intended). It provides a solid coordination model, and a method for rapidly constructing
coordinated interfaces. Visualizations could be simple html and Javascript pages, or
more advanced Java applets as Hyperbolic Trees. Web designers could quickly place
visualizations into frames and coordinate them. This would solve the primary

remaining problem with Snap: distribution to users.

7.5 Conclusions

| believe that Snap-Together Visuaization may help information visualization
succeed more widely. Snap users can construct the coordinated-visualization interfaces
they need for their data and tasks, which would otherwise be difficult and time
consuming to obtain.

Y et, thisresearch is only the beginning. Snap opens new possibilities for applied
information visualization. It isone step towards ‘crossing the chasm' [M0091] —
towards helping awider range of usersto explore data, make complex decisions, and

apply their creativity [ShnQ0].
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Appendix A:
Scenarios

Snap-Together Visualization has been used with avariety of data and visualizations
that demonstrate its breadth and usefulness. Example applications include: WestGroup
case law, Census Bureau statistics, GIS maps, Maryland State Highway Administration
incident data, personal photo libraries, stock market portfolios, web-site logs, mailing
address databases, technical-report databases, and hierarchical file structures. These
scenarios use a variety of datatypes, including textual, numeric, geographic,
hierarchical, and image. They also employ a variety of visualizations including
commercia and non-commercial, and Windows-based as well as web-based. Each
scenario includes the specification for the coordinated-visualization interface using the

notation of the Snap model from Chapter 3.

A.1 Web-Site Logs

In related work on visualizing web-site logs, Hochheiser [HS99] created scriptsto
parse web-site log filesinto an Access database. These files contain data about hitsto
the HCIL web site. Using Snap, a coordinated-visualization interface (Figure A.1) was
easly constructed for examining what other web pages refer many readers to pages on
the HCIL web site. The three visualizations at the top (outliner, Treemap, Internet
Explorer) form a site browser for the HCIL web site. The outliner and Treemap display

the hierarchical structure of the site. Selecting a page in either displays that pagein |E.
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The Treemap shows that the HCIL home page, Pad++, and the Visible Human Explorer
are the most frequently visited pages.

The two visualizations at the bottom (scatter plot, and IE) display other pages that
refer readers to the selected page in the site browser. The plot shows referring pages
along the X-axis and the number of hits referred (during October 1998) on the Y -axis.
Selecting the most frequent referrer (110 hits) to the HCIL home page reveals Human
Factors International in IE. Exploring reveals other common referrers, including Ben
Shneiderman’s page, the Department page, and Y ahoo’s HCI institutes page. Selecting
the Visible Human Explorer page in the outliner shows nearly 1000 hits from the
Nationa Library of Medicine page. Selecting to open this page indeed reveals a
prominent link to the HCIL page. Naturally, HCIL lab members explored to discover
referrer patternsto their personal pages.

The Snap specification for thisinterfaceis:

Visualizations = { (outliner, pages), (Treemap, pages), (IEwp, pages),
(plot, pageReferrers), (IEpotom, pageReferrers)  }

Coordinations = {((outliner, select), (Treemap, select)),
((outliner, select), (IEwyp, load-PK)),
((outliner, select), (plot, load-FKpage)),
((plot, select), (IEpottom, l0ad-PK))  }
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A.2 CensusData

Figure A.1: Web-site logs scenario

Figure A.2 is an interface for exploring Census population data of U.S. states (left)

and counties (right). Users can explore from nominal, geographic and numeric

perspectives. Selecting Maryland reveals that it ranks very high in terms of income per

capita and percent college graduates. Maryland has two counties that have much higher

percentage of college graduates that the others. One of these, Montgomery County, has

the highest per capitaincome and is clearly located just north of DC.

This example demonstrates the use of ESRI MapObjects, a component of the

popular ArcView GIS software.
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Snap isin use at the Census Bureau to prototype user interfaces for CD-ROM

products. Census analysts have also found the capability to relate data between maps

and plots extremely helpful. Continued work on Snap at Census has aready enabled

multiple selection for brushing and linking, and connection to intranet-based Oracle

database servers.
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Figure A.2: Census data scenario

The Snap specification for thisinterfaceis:

Visualizations = { (Mmapstates, States), (plotsiates, States), (listsuies, States),
(Mapcounties; counties), (ploteounties, COUNtiES),

(listcounties, counties)  }
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Coordinations = { ((Mapstates, select), (plotsuates, Select)),
((mapstates, select), (listsiates, select)),
((mapcounties, select), (ploteounties, Select)),
((mapcounties, select), (listcountes, Select)),
((mapstates, select), (Mapcounties, ZOOM)),
((mapstates, SeleCt), (pIOtcounties, Ioad'FKstate)),
((pIOtcounties, Ioad'FKstate), (IiStcounties, Ioad'FKstate)) }

A.3 Photo Libraries

Snap was used in an HCIL research project on user interfaces for personal digital-
photo libraries [KTS00] to explore many possible designs. The lab has accumulated a
database of scanned photos of lab members and activities spanning 10 years. It includes
annotations such as members names, dates, locations, and other information.

In Figure A.3, athumbnail visualization shows a collection of a few hundred photos.
The scatter plot displays a time-line overview of the photos, with date on the X-axis and
members namesonthe Y. Uses can seetrends and patterns. For example, vertica
stripes of dots represent group events, pictures of many members on the same date. The
large stripe in the middle is many photos from the 1992 HCIL Open House. Selecting a
photo from winter ’ 89 displays the full-size photo from a ski trip, alist of names of
members in the photo, and details of photo attributes.

Other interface variations include locating photos by members names or locations,
selecting a person in a photo to find other pictures of that person, etc.

The Snap specification for thisinterfaceis:

Visualizations = { (thumbnails, photos), (plot, photos), (IE, photos),
(listpeople, appearances), (listgetis, photos) }

Coordinations = {((thumbnails, select), (plot, select)),
((thumbnails, select), (IE, load-PK)),
((thumbnails, select), (listpeopie, l0ad-FKpnoto)),
((thumbnails, select), (listgetils, l0ad-PK)) }
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Figure A.3: Photo libraries scenario

A.4 WestLaw Case-Law Documents

Significant inspiration for the Snap concept resulted from an HCIL research project

for WestLaw on visualization of case-law documents. Snap was used to prototype

work-benches for legal analysts. A major task that the analysts performisto search

large case-law document databases using keywords, and then examine resulting cases

for relevance to a current case.

This user interface in Figure A.4 is for browsing search results. The visualizations

at the top of the screen display the hits resulting from a search. The Snap search
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window is used to enter search terms (described in Chapter 4). The hits are displayed
both textually and graphically by date and search relevance. Selecting a case displays it
in the case viewer at the bottom of the screen.

The case viewer displays the text-intensive details of the case in a manner that
supports rapid navigation. A case is composed of ajudge’s decision text, which is
partitioned into sections. Each section has a WestLaw headnote, containing a
categorization and annotation. WestLaw’s existing user interface smply listed out all
the information in a single web page with many intra-links between sections and
headnotes. Since users often refer to headnotes while browsing the decision text, yet
need to scan the decision as a contiguous text, a two-frame synchronized-scrolling
approach is more appropriate. The main list visualization on the right displays the text
of the case by sections. The center list displays WestLaw headnotes for each section,
and synchronizes scrolling with the main text. Since many cases are long, containing
10 to 50 headnotes, users can quickly jump to a section by selecting section numbers
from the overview list on the left.

This example demonstrates how Snap would be ideal for rapid web-based user
interface construction. In fact, based on this prototype, WestLaw did implement this
case-viewer design in their web site (www.westlaw.com).

The Snap specification for thisinterfaceis:

Visualizations = {(search, phrases), (listnis, cases), (plot, cases),
(listoverview, sections), (listheadnotes, S€CtIONS),
(listiext, SECtIONS) }

Coordinations = {((search, search), (listhits, load-FKsearch)),
((listhits, load-FKsearch), (plot, load-FKsearch)),

((listyits, select), (plot, select)),
((Iisthits, Select), (Iistover\/iew, Ioad'FKcase)),
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((IiStoverview, Ioad'FKcase), (IiStheadnotes, Ioad'FKcase)),
((listoverviews 10ad-FKcase), (listiex, l0ad-FKcase))
((listoverviews Select), (listheadnotes, SCroll)),
((listheadnotes, scroll), (listex, scroll)), }
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Figure A.4: Case-law scenario
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A.5 Highway Incident Data

For an HCIL research project on visual aggregation strategies, Fredrikson [FNP99]
used Snap with Maryland State Highway Administration incident data. She identified
temporal, geographical and categorical attributes as ideal candidates for aggregation.
The drill-down coordination was used to alow usersto select aggregates in one
visualization to display aggregate contents in another visualization. For example,
Figure A.5 displays aggregations of highway accidents by day of the week in a bar
chart. Selecting Monday, which had the most accidents, reveals the locations of

individual accidents on the road map of the Baltimore, MD area.
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Figure A.5: Highway incident data scenario
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While the data set used in this project was not large (~1000 tuples), this technique
demonstrates how Snap can be used to explore very large-scale relations using drill
down. For example, 1,000,000 traffic incidents could be aggregated into 1,000
aggregates, each with 1,000 incidents. This could be displayed with two coordinated
visualizations, an overview of 1,000 points, and a detail view of 1,000. Furthermore,
this approach can be repeated by chaining several visualizations, adding an additional
visualization for each level to multiply by powers of 1,000.

The Snap specification for thisinterfaceis:

Visualizations = { (barchart, dayAggregates), (map, incidents) }

Coordinations = {((barchart, select), (map, load-FKgay)) }

A.6 Mailing Address Database

In Figure A.6, Snap is used to explore addresses in the HCIL mailing-list database.
The names are displayed in asimple table. The table is coordinated to IE, in which a
query is loaded that formulates a mailing address as a URL query string to Y ahoo Maps.
Then, selecting a name in the mailing list displays a map of the location of that address.
This example demonstrates how web services such as Y ahoo Maps can be used as snap-
able visualizations.

The Snap specification for thisinterfaceis:

Visualizations = { (table, addresses), (IE, addressQueryStrings) }

Coordinations = {((table, select), (IE, load-PK))}
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Figure A.6: Mailing address database scenario

A.7 Filesand Folders

The file-folders scenario in Chapter 1 demonstrates how Java applets such as
Hyperbolic Trees can be snap-enabled using |E (Figure A.7). |E isalso useful asa
genera-purpose file viewer for images, HTML, PDF and Word documents, etc.

The Snap specification for thisinterfaceis:

Visualizations = { (plot, folders), (hyperbolic, folders), (table, files),
(IE, files)}

Coordinations = {((plot, select), (hyperbolic, select)),

((plot, select), (table, load-FKsoger)),
((table, select), (IE, Load-PK)) }
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Figure A.7: Files and folders scenario

A.8 Stock Market Portfolios

In data analysis, it is often useful to view both the graphical visualization as well as

the detailed numeric spreadsheet. In Figure A.8, Snap is used to display a financial

stock portfolio. Brushing and linking relate the Treemap and spreadsheet.

The Snap specification for thisinterfaceis:

Visualizations

Coordinations

{ (treemap, stocks), (table, stocks)

{((treemap, select), (table, select))

}
}
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Figure A.8: Stock market portfolio scenario

A.9 Visible Human Images

As described in Chapter 3, Snap could also be used in medical and scientific
domainsto relate physical structuresin images to other types of information. The
mockup in Figure A.9 demonstrates the concept. While this example has not been
implemented, it can be done with Snap. For example, html image maps in |E have been

used with Snap. An image map of the U.S. was used prior to the use of ArcView
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(Figure A.10). Another approach might be to use a volume visualization tool that
supports the selection of structural objects.
The Snap specification for this interface would be:
Visualizations = { (volumeviz, structures), (outliner, structures) }

Coordinations = {((volumeviz, select), (outliner, select)) }
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Figure A.10: Image map in |E
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A.10 Summary

These scenarios also demonstrate the serious need that Snap fulfills. Without the
use of Snap, scenarios such as the web logs example ssimply could not be readily
accomplished. They would require significant custom programming, or the difficult
and tedious use of uncoordinated displays.

These examples demonstrate how Snap has aready been highly applicable and
useful in many projects. 1t has been useful to both researchers and practitioners, and
has already had an impact at several organizations including HCIL, the Census Bureau,

Spotfire and WestLaw.
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Appendix B:
Review of Coordinated-Visualization
Systems

Coordinated visualization systems have become an important and diverse topic.
Many such systems have been built. Most of these systems are data flexible (defined in
Chapter 2). That is, typically they can be used to visualize different data sets, but are
usually fixed in terms of the visualizations and coordinations in their user interface.
This Appendix reviews many of these systems from the field. Asin the rest of this
dissertation, the focusis on coordinations for information exploration.

A simple taxonomy is used to lay out the space of these systems [NS97], loosely
based on the conceptual model of visualization coordination described in Chapter 3.
Visualizations have two basic classes of actions:

Select: Users can select and highlight data items in the visualization to express
interest in them, or possibly to initiate other forms of manipulation on them.
Navigate: Users can navigate the visualization to focus on dataitems or to
display other data items (e.g. scroll, pan, zoom, dlice, rotate, ascend/descend
tree, follow link, openfile, etc.). For the purposes of this taxonomy, navigate
also includes the load action to load other data into a visuaization as a form of

navigation through the larger data context.
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Coordinating a pair of visualizations tightly couples one of these actions in the one
visualization to another action in the other visualization. The taxonomy classifies
coordinations by the three possible combinations of actions (Figure B.1):

1. Select « select

2. Navigate « navigate

3. Select « navigate (whichis equivalent to navigate « select due to bi-

directionality)

Select «  Select Navigate « Navigate Select « Navigate

O O O jHD
% Ol }b—
] O ]

A5 i L]

Figure B.1: A taxonomy of coordinations

B.1 Sdect « Select

This coordination tightly couples selecting items in one visualization to selecting
items in another visualization, to help users correlate equivalent or related items. When
users select (highlight, paint, brush) an item (or set of items) in one visualization, the
system immediately highlights the equivalent item (or set), representing the same
underlying data elements, in the other visualization.

Many exploratory data analysis systems use this coordination to visualize high-
dimensional data point sets with multiple coordinated plots. Common examples are

Datadesk [Vel88], SAS Insight, IMP, EDV [EW95], Spotfire [AW95], X Gobi [BCS96],
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XmadvTool [WA95]. Invention of this brushing-and-linking concept is generally
credited to Prim-9 [FFT74] or Newton [New78]. [Mon89] introduced brushing to GIS
by brushing between plots and geographic choropleth maps. XmdvTool providesthe
capability to brush regions in attribute space as well asindividual data items. For
example, in Figure B.2 an n-dimensional region is selected in both the plot matrix and

parallel-coordinates graph.
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Figure B.2: XmdvTool

For examples with other types of data, the Navigational View Builder [MFH95]
(Figure B.3) brushes nodes in hierarchical information, linking Treemaps (emphasizing
numerical and categorical attributes), ConeTrees (emphasizing structure), and outliners
(emphasizing node names). With Lilac [Bro91], atwo-window document editor,
selecting text in the WY SIWY G page window also selects the corresponding text in the

source text window (similar to HTML code).
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Figure B.3: Navigational View Builder

An interesting variation is the Attribute Explorer [STD95], which uses additive
encoding of multiple brushes (Figure B.4). It displays multi-dimensional datain a
series of 1-dimensional histograms, and users can select arange in each histogram.
Then, data points are color coded by the number of attribute selections they are

contained in. Points that satisfy more selections are lighter, fewer selections are darker.

LI - Bedrooms _IE = Price SESEST

[ Type_of_House A0 Garden_Size 000

Figure B.4: Attribute Explorer
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Visage VQE [DRK97] extends brushing to multiple relations. Visualizations

containing joins of relations can be brushed if they share a common relation anywhere

in their join paths. An early prototype of LinkKit [Nor98] demonstrates brushing across

many-to-many joins for exploring authors, publications, and other references (Figure

B.5).
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Figure B.5: LinkKit prototype in Elastic Windows
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B.2 Navigate « Navigate

This coordination tightly couples navigation in one visualization to simultaneous
navigation in another visualization. This maintains synchronization of visualizations
while navigating (e.g. scrolling, panning, zooming, dicing, traversing, etc.) through

correlated information spaces (e.g. Figure B.6)

\‘

Figure B.6: Synchronized scrolling

Synchronized scrolling tightly couples the scroll bars of two visualizations.
WordPerfect displays a document’ s formatting codes in a separate frame adjacent to the
main text that with synchronized scrolling. This approach avoids losing the relationship
between representations and saves users from tedious repetition of scrolling actionsin
each frame. With Logos Bible Software, users can simultaneously scroll through
different Bible trandations, commentaries, and study guides, which all share a common
ordered hierarchical structure of book, chapter, and verse. SeeDiff [BE96] synchronizes
scrolling through two version of a source code file for analyzing changes (Figure B.7).
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DEVise [LRB97] generalizes this synchronized navigation strategy to 2D, alowing
users to synchronoudly pan and zoom multiple 2D plots with common X and Y axes.
The Neighborhood Viewer [CSP97] (Figure B.8) extends thisto 3D dlicing by
synchronously panning correlated cross-section, CT, and MRI images through the
human body. Chi et al. [CBR97] (Figure B.9) extends synchronized navigation to
general 3D. It arranges many small 3D visualizations in a spreadsheet grid and

synchronizes their rotation, zooming, etc.

Figure B.7: SeeDiff
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Figure B.9: Spreadsheet Visualization
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B.3 Select « Navigate

This coordination tightly couples selecting items in one visualization to navigating
in another visualization, and vice versa (i.e. navigate to select). Users can select items
from overviews to navigate to corresponding detailed information in separate
visualizations. Likewise, navigating the detailed visualization indicates the

corresponding selection in the contextual overview (Figure B.10).
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Figure B.10: Overview and detall

Overviews provide a globa map of information, and detail visualizations provide
detailed information about a small portion. Coordinating the visuaizations indicates the
location of and provides a mechanism for navigating the detail from within the context
of the overview. Thisis advantageous over detail-only browsers since overviews
indicate what information is available, provide context for details, guide browsing,
promote exploration, and help avoid getting lost. This strategy contrasts with

distortion-oriented techniques [LA94], which attempt to show details within the context
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of the overview in asingle visuaization by distorting the view. Animportant metric is
the zoom factor between the overview selection and detall. Larger zoom factors alow
for more information. While zoom factors for distortion techniques are typically

limited to 5 or less, coordinated visualizations can reach zoom factors of 20 for attribute
spaces [PCH92] and 1000 for data aggregation strategies. Also, severa of these
coordinations can be chained together using intermediate visualizations [PCS95] to
multiply zoom factors.

With the Navigational View Builder [MFH95] (Figure B.3), and other web site
visualization tools, users can select any node in avisualization of alarge site to display
that web page in a separate browser window. This strategy has become commonplace
in user interface design. It is used in many standard tools such as Microsoft Word and
Windows Explorer. It isalso used with frames on web pages. Simultaneous menus
[HKV0Q] enables users to select from multiple overviews to display resultsin asingle

detail visualization based on all the selections (Figure B.11).

| TETICHpeT SEQUENTAl MEnE

S Pl e 3 Comm i
'| b~ Buukr arke 1 aneier [E‘_]_E.r'Esfhe‘-_--:‘:ij\s'n-':Lr'!}-l;’pr-:j-e-::,‘xren.\sr'si:\m.\'_t/menus.':\I:rl rlﬂ

CountiesHarford

Data:Harford-Transpartation and Public
LHilities 12394

Employees
1,85

Annual Payroll

Establi
zo

ggggggggggg

Zanll
ki

Catagoriaa:Transpartatian and Puklic
Lhilities

E A% e 40 15 2

Figure B.11: Simultaneous Menus
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A variant of this approach shows details of selectionsin a new popup window
instead of a given static window, asin the FilmFinder [AS94] (Figure B.12). Selecting
adot on a scatter plot displays that record’ s fields, including pictures. However, this

requires additional clicks to dismiss the popup each time or move it aside.
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Figure B.12: FlmFinder

The select-to-navigate coordination can be used to drill down through layers of a
database, with separate visualizations for each layer. CASCADE [SMH96] (Figure
B.13) provides four layers of coordinated visualizations for zooming through 4 different
levels of scale within alarge document database: the Docuverse level (collection of up
to 5000 documents), Webview (up to 500 documents), Landmarks (within asingle

document), and Preview (individual item in a document, such as a hyperlink).
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Figure B.13: CASCADE

For attribute spaces, dragging or resizing a field-of-view indicator (selection) in the
overview istightly coupled to pan or zoom (navigation) the detail visualization, and
vice versa. Scroll bars, albeit poor overviews of their associated main window, are a
simple 1D example. The Information Mural [JS95] (Figure B.14), SeeSoft [BE96]
(Figure B.15), ValueBars [Chi92], and others [Eic94] provide highly reduced images of
large documents or software code, using color coding and anti-aliasing algorithms, for
navigating 1D document windows with fields-of-view.

The “cursor” link in DEVise [LRB97] links a 2D field-of-view in an overview plot
to the panning control of the axesin adetail plot. Similar 2D approaches are used in
Pad++ portals [BH94] and in PDQ Trees [KPS97] (Figure B.16) for hierarchies laid out
on a2D surface. Plaisant et al. [PCS95] developed a formal notation for specifying this
coordination for browsing large 2D images that is replicated in many digital imaging

packages such as Adobe Photoshop.
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Figure B.16: PDQ Trees

For a 3D volumetric image space, with the Visible Human Explorer [NSP96] users
can rapidly navigate each orthogona 2D cross-section visualization through the human
body by dragging the corresponding cut lines in the other visualizations, and receive

continuous feedback of contents (Figure B.17).
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Figure B.17: Visible Human Explorer

An extension to this approach is to use one visualization to keep a history of
navigation in other visuaizations. With select-to-navigate coordination, users can
revisit previous states. PadPrints [HRH98] (Figure B.18) and the Graphical History
Browser [AS95] both maintain iconic node-link diagrams of visited web pages for a

web browser. Utting and Y ankelovich [UY 89] review severa such approaches for
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hypertext navigation. They extend their Intermedia system to include a map of
destinations that can be reached from the current page as well, hence providing a

selectable visualization of both history and potential future.
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Figure B.18: PadPrints

B.4 Summary

Many coordinated-visualization interfaces have been developed, and have proven to
be very useful and effective. Y et, these are only a small number in comparison to the
myriad different combinations of visualizations and coordinations that are needed for so
many unique users, data, and tasks. Clearly, these many examples serve to point out the

need for Snap-Together Visualization.
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Appendix C:
User Study Materials

C.1 Evauation of Coordination Construction

C.1.1 Background Survey

1. Occupation (position title)

2. Census data experience

3. Computer usage experience (frequency, applications)

4. Relational database concepts (tables, attributes, rows, relationships, keys)

5. Microsoft Access experience, SQL experience (designing DBs, writing queries)
6. Visualization tools experience

7. Programming experience (components, databases, user interfaces, web design)

C.1.2 Verba Post-Survey

1. Other ideas for browsing this data?
2. Trouble spotsin using Snap?
3. Suggestions for improving the Snap user interface?

C.2 Evaluation of Coordination Operation

C.21 Data

The information presented to the user in the detail window consisted of the

following statistics for 47 states. The three missing states were Minnesota, Mississippl,

and Missouri.

State: Maryland
Population: 4781468
Families: 1256327
Households: 1749342
Male %: 48.5%
Female %: 51.5%
Urban %: 81.3%
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Average Age: 33.1

HS Diploma %: 78.4%
College Degree %: 3L.7%
English Speaking %: 84.3%
Average Commute Time: 33
Carpool Commute %: 15.2%
Public Transportation %: 8.1%
Per Capita Income: 17730
Median Family Income: 45034

Median Household Income: 39386
No Income Households%: 15.3%
Average Persons per Family: 3.81
Average Workers per Family: 1.88

Housing Units: 1891917

Vacancy %: 8.2%

Average Bedrooms: 2.73

Average Persons per Unit: 2.73

Median Value: 115500

Median Mortgage: 919

Median Rent: 548

Rent % Household Income: 25.4

Flag Description: The Maryland flag contains the family crest of the

Calvert and Crossland families. Maryland was founded as an English colony in
1634 by Cecil Calvert, the second Lord Baltimore. The black and Gold designs
belong to the Calvert family. The red and white design belongs to the Crossland
family.

C.2.2 TasK Sets

Practice Tasks:

What is the Population of Georgia?
Does the information include statistics about the state of Wyoming?
Which of the first four states has the highest xxxx?

Task Group #1:

Question Answer
1. What is the Population of Tennessee? 4,877,185
2. Does the information include statistics about the state of Ohio? Yes
3. Which of the following states has higher Median Family Income: CA
California or Washington?
4. Which state has Average Commute Time of 317? NJ
5. How many statesin the list begin with the letter ‘M’ ? 5
6. Which of the following 5 states has the highest Median Household Alaska
Income: Florida, Rhode Idland, Louisiana, Alaska, or New Jersey?
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7. Does the information include statistics about the state of Minnesota? | No

8. Which state has the highest HS Diploma %? Alaska

9. What is the Population of the 6th state from the bottom of the list? VT
562,758

Task Group #2:
Question Answer

1. What is the Population of Texas? 16,986,510

2. Does the information include statistics about the state of Oklahoma? | Yes

3. Which of the following states has higher Median Family Income: CO

Colorado or West Virginia?

4. Which state has Average Commute Time of 32? NM

5. How many statesin the list begin with the word ‘New’ ? 4

6. Which of the following 5 states has the highest Median Household GA

Income: Georgia, South Carolina, Maine, Arizona, or New Mexico?

7. Does the information include statistics about the state of No

Mississippi?

8. Which state has the highest College Degree %7? Mass

9. What is the Population of the 5th state from the bottom of the list? VA
6,187,358

Task Group #3:
Question Answer

1. What is the Population of Utah? 1,722,850

2. Does the information include statistics about the state of Oregon? Yes

3. Which of the following states has higher Median Family Income: Conn

Connecticut or Wisconsin?

4. Which state has Average Commute Time of 35? NY

5. How many statesin the list begin with the letter ‘O’ ? 3

6. Which of the following 5 states has the highest Median Household MD

Income: Hawaii, South Dakota, Maryland, Arkansas, or New Y ork?

7. Does the information include statistics about the state of Missouri? No

8. Which state has the highest English Speaking %7? WV

9. What is the Population of the 4th state from the bottom of the list? Wash
4,866,692
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C.2.3 Questionnaire for User Interface Satisfaction

User Interface #1:

Comprehensibility:  confusing Clear
1 2 3 4 5 6 7 8 9
Ease of Use: difficult easy
1 2 3 4 5 6 7 8 9
Speed of Use: dow fast
1 2 3 4 5 6 7 8 9
Overadl Satisfaction: terrible wonderful

1 2 3 4 5 6 7 8 9

User Interface #2:

Comprehensibility:  confusing Clear
1 2 3 4 5 6 7 8 9
Ease of Use: difficult easy
1 2 3 4 5 6 7 8 9
Speed of Use: dow fast
1 2 3 4 5 6 7 8 9
Overadll Satisfaction: terrible wonderful

1 2 3 4 5 6 7 8 9

User Interface #3:

Comprehensibility:  confusing Clear
1 2 3 4 5 6 7 8 9
Ease of Use: difficult easy
1 2 3 4 5 6 7 8 9
Speed of Use: dow fast
1 2 3 4 5 6 7 8 9
Overadl Satisfaction: terrible wonderful

1 2 3 4 5 6 7 8 9

Comments:

C.24 Statistica Results

Effect F value p
User Interface F(2,442) = 86.2 p <.001
Task F(8,442) = 377 p <.001
Ul x Task Interaction | F(16,442) = 20.9 p<.001

Figure C.1: Overal 3x9 ANOVA satistics for user performance
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Task

1 2 3 4 5 6 7 8 9
Detail-Onl 9.2 89| 16.6| 125| 102| 21.2| 799| 86.0| 172
y 3.0 3.0 53 4.7 51 50| 332 | 233| 325
No- 99| 105| 222| 779| 90.1| 174
Coordination 2.7 45 6.0| 347 | 400| 415

Coordination

3Xx1LANOVA | 929| 895| 86.9| 125| 294 | 23.7| 122 | 249| 477
F(2,34), p< .001| .001| .001| .001| .001| .001| .001| .001| .001

Figure C.2: Mean and standard deviation of user performance times (in seconds)

Figure C.2 shows the significance levels of the one-way ANOV As for the user

interface factor for each task. It also shows results of the pair-wise t-test comparisons

of user interface treatments within each task. The shaded cells are significantly faster

than the white cells within each task at the p<.005 level. The details of these pair-wise

comparisons are shown in Figure C.3, the output of the analysis using the SPSS

statistical software package. The user-interface treatments and task treatments are

coded as follows:

User-Interface Treatments

1

Detail-Only

No-Coordination

2
3

Coordination

Task Treatments

Coverage-yes

Coverage-no

Overview patterns

Visual lookup

Nominal lookup

Compare-2

Compare-5

Search

OO N[OOI WINF

Scan
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Mean 99% Confidence Interval for
Difference Difference”

Task Ul U@ (1-J) Std. Error Sig.® Lower Bound | Upper Bound
Task 1 1 2 6.894* .633 .000 5.059 8.730
3 7.544*% .654 .000 5.649 9.440

2 1 -6.894* .633 .000 -8.730 -5.059

3 .650 .548 .252 -.938 2.238

3 1 -7.544*% .654 .000 -9.440 -5.649

2 -.650 .548 252 -2.238 .938

Task 2 1 2 6.472% .710 .000 4.413 8.531
3 6.372*% .570 .000 4.720 8.024

2 1 -6.472% .710 .000 -8.531 -4.413

3 -.100 .304 746 -.982 782

3 1 -6.372% .570 .000 -8.024 -4.720

2 .100 .304 746 -.782 .982

Task 3 1 2 13.344* 1.355 .000 9.419 17.270
3 13.133* 1.250 .000 9.511 16.755

2 1 -13.344* 1.355 .000 -17.270 -9.419

3 -.211 .798 .795 -2.524 2.102

3 1 -13.133* 1.250 .000 -16.755 -9.511

2 211 .798 .795 -2.102 2.524

Task 4 1 2 2.639 1.310 .060 -1.157 6.435
3 6.783* 1.583 .000 2.197 11.370

2 1 -2.639 1.310 .060 -6.435 1.157

3 4.144* 1.187 .003 .703 7.586

3 1 -6.783* 1.583 .000 -11.370 -2.197

2 -4.144*% 1.187 .003 -7.586 -.703

Task 5 1 2 -.267 1.318 .842 -4.087 3.554
3 7.628* 1.125 .000 4.367 10.889

2 1 267 1.318 .842 -3.554 4.087

3 7.894* 1.045 .000 4.867 10.922

3 1 -7.628* 1.125 .000 -10.889 -4.367

2 -7.894* 1.045 .000 -10.922 -4.867

Task 6 1 2 -.983 1.183 417 -4.411 2.444
3 7.250% 1.177 .000 3.838 10.662

2 1 .983 1.183 417 -2.444 4411

3 8.233* 1.527 .000 3.807 12.660

3 1 -7.250% 1177 .000 -10.662 -3.838

2 -8.233* 1.527 .000 -12.660 -3.807

Task 7 1 2 2.000 11.242 .861 -30.581 34.581
3 40.778* 8.098 .000 17.307 64.249

2 1 -2.000 11.242 .861 -34.581 30.581

3 38.778* 8.270 .000 14.809 62.747

3 1 -40.778* 8.098 .000 -64.249 -17.307

2 -38.778* 8.270 .000 -62.747 -14.809

Task 8 1 2 -4.111 8.470 .634 -28.660 20.437
3 44.167* 4.483 .000 31.173 57.160

2 1 4.111 8.470 .634 -20.437 28.660

3 48.278* 8.993 .000 22.213 74.343

3 1 -44.167* 4.483 .000 -57.160 -31.173

2 -48.278* 8.993 .000 -74.343 -22.213

Task 9 1 2 -722 10.914 .948 -32.354 30.909
3 86.722* 10.422 .000 56.517 116.928

2 1 722 10.914 .948 -30.909 32.354

3 87.444*% 9.506 .000 59.894 114.995

3 1 -86.722% 10.422 .000 -116.928 -56.517

2 -87.444*% 9.506 .000 -114.995 -59.894

Based on estimated marginal means
*. The mean difference is significant at the .01 level.
a. Adjustment for multiple comparisons: Least Significant Diff (equivalent to no adjustments).

Figure C.3: Pair-wise t-test comparisons of user interfaces on user performance
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Effect F value p
User Interface F(2,187) = 70.2 p <.001
Satisfaction Category | F(3,187) = 9.2 p <.001
Ul x Category F(6,187) =11.1 p <.001

Figure C.4: Overall 3x4 ANOVA satistics for subjective satisfaction

Satisfaction Category
Comprehen- Speed of
sibility Ease of Use Use Overdll

) 6.4 4.1 29 3.3
Detal-Only 24 24 15 14
No- 6.6 5.1 4.8 4.8
Coordination 2.2 1.8 1.7 1.7
. 8.3 8.1 8.1 7.9
Coordinztion 1.2 0.9 11 11
3x1 ANOVA 9.4 33.6 83.4 103.5
F(2,34), p< .001 .001 .001 .001

Figure C.5: Mean and standard deviation of subjective satisfaction ratings

Mean 99% Confidence Interval for
Difference Difference”
Category Ul (1) Ul (J) (I-J) Std. Error Sig.a Lower Bound | Upper Bound
COMP 1 2 =111 511 .830 -1.591 1.369
3 -1.833* .459 .001 -3.164 -.503
2 1 111 511 .830 -1.369 1.591
3 -1.722* 449 .001 -3.023 -.422
3 1 1.833* .459 .001 .503 3.164
2 1.722* 449 .001 422 3.023
EASE 1 2 -1.000 443 .037 -2.283 .283
3 -3.944* .591 .000 -5.658 -2.231
2 1 1.000 443 .037 -.283 2.283
3 -2.944* .454 .000 -4.259 -1.630
3 1 3.944* .591 .000 2.231 5.658
2 2.944* .454 .000 1.630 4.259
SPEED 1 2 -1.833* 406 .000 -3.011 -.656
3 -5.167* .398 .000 -6.321 -4.013
2 1 1.833* .406 .000 .656 3.011
3 -3.333* 412 .000 -4.528 -2.139
3 1 5.167* .398 .000 4.013 6.321
2 3.333* 412 .000 2.139 4.528
OVERALL 1 2 -1.556* .283 .000 -2.375 -.736
3 -4.611* .354 .000 -5.636 -3.586
2 1 1.556* .283 .000 .736 2.375
3 -3.056* .338 .000 -4.035 -2.076
3 1 4.611* .354 .000 3.586 5.636
2 3.056* .338 .000 2.076 4.035

Based on estimated marginal means
*. The mean difference is significant at the .01 level.
a. Adjustment for multiple comparisons: Least Significant Diff (equivalent to no adjustments).

Figure C.6: Pair-wise t-test comparisons of user interfaces on subjective satisfaction
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