

Abstract

Title of Dissertation: A USER INTERFACE FOR COORDINATING

VISUALIZATIONS BASED ON RELATIONAL

SCHEMATA: SNAP-TOGETHER VISUALIZATION

Christopher Loy North, Doctor of Philosophy, 2000

Dissertation directed by: Professor Ben Shneiderman

Department of Computer Science

In the field of information visualization, researchers and developers have created

many types of visualizations, or visual depictions of information. User interface

designers often coordinate multiple visualizations, taking advantage of the strengths of

each, to enable users to rapidly explore complex information. However, the

combination of visualizations and coordinations needed in any given situation depends

heavily on the data, tasks, and users. Consequently, the number of needed

combinations explodes, and implementation becomes intractable.

Snap-Together Visualization (Snap) is a conceptual model, user interface, software

architecture, and implemented system that enables users to rapidly and dynamically

construct coordinated-visualization interfaces, customized for their data, without

programming. Users load data into desired visualizations, then create coordinations

between them, such as brushing and linking, overview and detail, and drill down.

This dissertation presents four primary contributions. First, Snap formalizes a

conceptual model of visualization coordination that is based on the relational data

model. Visualizations display relations, and coordinations tightly couple user

interaction across relational joins.

Second, Snap’s user interface enables the construction of coordinated-visualization

interfaces without programming. Data users can dynamically mix and match

visualizations and coordinations while exploring. Data disseminators can distribute

appropriate interfaces with their data. Interface designers can rapidly prototype many

alternatives.

Third, Snap’s software architecture enables flexibility in data, visualizations, and

coordinations. Visualization developers can easily snap-enable their independent

visualizations using a simple API, allowing users to coordinate them with many other

visualizations.

Fourth, empirical studies of Snap reveal benefits, cognitive issues, and usability

concerns. Six data-savvy users successfully, enthusiastically, and rapidly designed

powerful coordinated-visualization interfaces of their own. In a study with 18 subjects,

an overview-and-detail coordination reliably improved user performance by 30-80%

over detail-only and uncoordinated interfaces for most tasks.

Snap has proven useful in a variety of domains, including census statistics and

geography, digital photo libraries, case-law documents, web-site logs, and traffic

incident data.

A USER INTERFACE FOR COORDINATING
VISUALIZATIONS BASED ON RELATIONAL SCHEMATA:

SNAP-TOGETHER VISUALIZATION

by

Christopher Loy North

Dissertation submitted to the Faculty of the Graduate School of the

University of Maryland, College Park in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
2000

Advisory Committee:
 Professor Ben Shneiderman, Chair
 Assistant Professor Ben Bederson
 Professor David Mount
 Associate Professor Kent Norman
 Associate Professor Adam Porter

© Copyright by

Christopher Loy North

2000

ii

To
Jodi

For
 Calli♥

Through
God

iii

Acknowledgements

First, I thank Ben Shneiderman for advice, encouragement, and inspiration. Ben has

been a wonderful advisor to me and major influence in my life. I could not possibly list

all that I have learned from him, such as how to do research, give a talk, and work with

others, as well as HCI content and the primacy of the human in the HCI equation. His

encouraging words inspired me to continue when all seemed hopeless. Clearly, this

dissertation would not exist without his influence.

Thanks to my dissertation committee members, Ben Bederson, Dave Mount, Kent

Norman, and Adam Porter, for many suggestions that have improved this dissertation.

Ben Bederson provided interesting discussions and reviews, and helped me learn to

write a good TR. Kent Norman provided significant advice for the user studies. Bill

Gasarch made things fun. Nancy Lindley was like a mom. Thanks also to Allan

Kuchinsky for a thorough draft review.

I also thank all the members of the Human-Computer Interaction Lab whom I have

been blessed to work with. Everything that HCIL produces is a group effort, so credit

for this dissertation goes to them as well. Thanks to Catherine Plaisant, Anne Rose,

Gary Marchionini, Eser Kandogan, Egemen Tanin, Zhijun Zhang, Flip Korn, and Ara,

Rich, Ninad, Harsha, Khoa, Arkady, Teresa, Janet, Kathy, Jason, Steve, Rohit, Stephan,

Dan, David, Anita, Laura, Tammara, Julia, Harry, Bob, Allison, Juan-Pablo, Lance,

Hyunmo, and many others. I especially acknowledge Anna Fredrikson, Gunjan Dang,

and Manav Kher for contributions to Snap. HCIL is a terrific group that I will miss.

iv

I greatly thank those who funded this research, including the National Library of

Medicine, NSF, UMIACS, WestLaw, Census Bureau, and Microsoft. Thanks to Kent

Marquis at the Census Bureau for enabling the application of Snap to real problems. I

thoroughly enjoyed working there with Rich, Lelyn, Betty, Laura, Dave Desjardins,

Rob Creecy, and Tommy Wright. Thanks to Eric Malecki, Meds, and Michelle

Baldonado at PARC for interesting diversions along the way.

Thanks also to my buddies at Montrose for support and prayers: Rich, John, Brian,

Mango, Frank, Todd, Tπ, Hammerdog, Mark, Carl, Skoops, Gary, GReiff, and gang.

Special thanks to my family and family-in-law. They are who I am, and I will

always learn more from them than can be written on paper. Thanks, Mom. To Cheri I

owe life (or I’d still be chasing AI!). I thank my Dad whose footsteps I strive to follow.

If I could be just half the man he is.

Alas, Jodi, by your sacrifice this dissertation has been achieved. This is your ‘walk’

too. I marvel at all you have accomplished during these years. In a mere nine months

you accomplished more than I ever will.

Most of all, I thank God. This dissertation was directly inspired by Him. Without

Him, I am nothing. Through Him, all things are possible. “For the foolishness of God

is wiser than man’s wisdom, and the weakness of God is stronger than man’s strength.”

(1 Corinthians 1:25). Thank you, Lord Jesus.

∃LiJah wαS h∈Re .

♥ remember.

v

Table of Contents

List of Figures ..ix

Chapter 1: Introduction ..1
1.1 Problem ...1
1.2 Snap-Together Visualization ..7

1.2.1 Scenario...8
1.3 Research Questions ..11
1.4 Scope...12
1.5 Content ..12

Chapter 2: Related Work..13
2.1 Conceptual Models of Coordination...13

2.1.1 Object-based vs. Attribute-based Coordination14
2.2 Flexibility in Coordinated Visualization ...14

2.2.1 Data Flexible ...15
2.2.2 Visualization Flexible ..16
2.2.3 Coordination Flexible ..18

2.3 Construction in Visualization ...23
2.4 Evaluation..25
2.5 Summary ...26

Chapter 3: Model of Visualization Coordination...27
3.1 Background..27
3.2 Relational Model of Visualization Coordination...28

3.2.1 Relational Schemata...28
3.2.2 Snap Model Overview ...29
3.2.3 Relations into Visualizations..31

3.2.3.1 Visualization Actions..32
3.2.4 Coordinating Visualizations ...34

3.2.4.1 One-to-One: Primary-Key to Primary-Key..............................35
3.2.4.2 One-to-Many: Primary-Key to Foreign-Key............................37
3.2.4.3 Many-to-One-to-Many: Foreign-Key to Foreign-Key..............38

3.2.5 Schema Management ...38
3.3 Graph Model of Composite Coordinations ...40

3.3.1 Commutative ...41
3.3.2 Transitive...41
3.3.3 Conflict Free..44
3.3.4 Subgraphs ..45

3.4 Applications and Limitations ...45
3.5 Extensions to the Model ...47

3.5.1 Multiple-Tuple Actions ..47
3.5.2 Unions and Intersections ..48

vi

3.5.3 Other Foreign-Key Actions ..49
3.6 Summary ...50

Chapter 4: User Interface for Coordination Construction and Operation51
4.1 Background..51

4.1.1 Users ...51
4.1.2 Requirements ...52

4.2 Coordination Construction ...53
4.2.1 Relations into Visualizations..53

4.2.1.1 Visualization Types ..54
4.2.2 Coordinating Visualizations ...56

4.2.2.1 Modifying Coordinations ..59
4.2.2.2 Coordination Suggestion...59

4.3 Coordination Operation..59
4.3.1 Bi-Directionality ..60
4.3.2 Propagation..61

4.4 Additional Features..61
4.4.1 Save Groups ..61
4.4.2 Extract ...62
4.4.3 Search Box ..63
4.4.4 History...64
4.4.5 Shopping Basket ..65

4.5 Enhancements ..65
4.5.1 Automatic Query Generation ...66

4.5.1.1 Selection ...66
4.5.1.2 Projection ...66

4.5.2 Data Compass ..67
4.5.3 Overview Diagram...69
4.5.4 Window Management ..70

4.6 Summary ...70

Chapter 5: Software Architecture for Visualization Coordination.......................71
5.1 Architecture Overview ...71
5.2 Visualizations ..72

5.2.1 Goals for Snap-Enabling Visualizations ...73
5.2.2 Snap Button ...74
5.2.3 Visualization API...75

5.2.3.1 Load Procedure...75
5.2.3.2 Action Procedure ..76
5.2.3.3 Action Event...76

5.2.4 Visualization Registration ..77
5.2.5 Programming Effort...77

5.3 Coordination ..79
5.3.1 Data Structures ..81
5.3.2 Algorithm ..81

5.4 Issues and Tradeoffs ..82
5.4.1 Independent vs. Integrated Visualizations ..82
5.4.2 Effort vs. Payoff ..84

vii

5.4.3 Snap vs. Programming ...84
5.4.4 Scalability ..86

5.5 Implementation Details ..88
5.6 Extensions ...90

5.6.1 Packaging and Deploying...90
5.6.2 Collaboration ...91

5.6.2.1 Synchronous Collaboration ...91
5.6.2.2 Asynchronous Collaboration ...92

5.6.3 Dynamic Data Consistency ..92
5.6.4 Integrating into Operating System..93

5.7 Summary ...93

Chapter 6: Evaluation of Coordination Construction and Operation95
6.1 Evaluation of Coordination Construction ...95

6.1.1 Procedure...96
6.1.2 Results ... 100
6.1.3 User Interface Issues .. 102

6.2 Evaluation of Coordination Operation .. 104
6.2.1 Independent Variables.. 105
6.2.2 Dependent Variables .. 107
6.2.3 Procedure... 107
6.2.4 Results ... 108
6.2.5 Subjective Satisfaction ... 111
6.2.6 Answers... 112

6.3 Combined Analysis .. 113
6.4 Summary ... 114

Chapter 7: Conclusion... 115
7.1 Contributions ... 115
7.2 Uses... 117

7.2.1 Users ... 117
7.2.2 Systems ... 117

7.3 Benefits ... 118
7.4 Limitations and Future Work ... 119
7.5 Conclusions ... 120

Appendix A: Scenarios .. 121
A.1 Web-Site Logs ... 121
A.2 Census Data ... 123
A.3 Photo Libraries .. 125
A.4 WestLaw Case-Law Documents... 126
A.5 Highway Incident Data .. 129
A.6 Mailing Address Database.. 130
A.7 Files and Folders .. 131
A.8 Stock Market Portfolios ... 132
A.9 Visible Human Images ... 133
A.10 Summary .. 135

Appendix B: Review of Coordinated-Visualization Systems 136

viii

B.1 Select ↔ Select.. 137
B.2 Navigate ↔ Navigate... 141
B.3 Select ↔ Navigate ... 144
B.4 Summary ... 151

Appendix C: User Study Materials ... 152
C.1 Evaluation of Coordination Construction ... 152

C.1.1 Background Survey.. 152
C.1.2 Verbal Post-Survey .. 152

C.2 Evaluation of Coordination Operation .. 152
C.2.1 Data... 152
C.2.2 Task Sets ... 153
C.2.3 Questionnaire for User Interface Satisfaction 155
C.2.4 Statistical Results... 155

References *... 159

ix

List of Figures

Figure 1.1: Hierarchy visualizations: Outliner, Hyperbolic Tree, Treemap1
Figure 1.2: Windows Explorer, three coordinated visualizations..................................2
Figure 1.3: Brushing and linking in Spotfire..3
Figure 1.4: Overview and detail with web frames..4
Figure 1.5: Synchronized scrolling with Logos Bible Software5
Figure 1.6: A coordinated-visualization interface for browsing folders and files.6
Figure 1.7: Opening visualizations ..9
Figure 1.8: Coordinating visualizations ...9
Figure 1.9: Specifying the coordination...10
Figure 1.10: Operating the constructed interface ...10
Figure 2.1: Overview and detail specification for image browsing.............................13
Figure 2.2: Treemap (left), and details pane (top right)..16
Figure 2.3: EDV, brushing and linking ..17
Figure 2.4: SAS JMP visualization toolbox menus ..17
Figure 2.5: Visage’s SAGE specifying a horizontal bar chart18
Figure 2.6: Apple Dylan with three split and linked frames19
Figure 2.7: Spreadsheet Visualization..20
Figure 2.8: Logos dialog for choosing windows to synchronize scroll20
Figure 2.9: DEVise, three bar charts synchronized by date on the X-axis21
Figure 2.10: DEVise dialog for specifying plot attributes to synchronize.....................21
Figure 2.11: LinkKit navigating the Visible Human ..22
Figure 2.12: IBM Data Explorer, data-flow (right) and visualization (left)23
Figure 2.13: LinkWinds ..24
Figure 2.14: Constructing coordinated visualizations ..26
Figure 3.1: Schema diagram..29
Figure 3.2: Snap model ...30
Figure 3.3: Relation visualization (left), single-tuple visualization (right)..................32
Figure 3.4: Diagram of a visualization and its actions..34
Figure 3.5: One-to-one coordination, e.g. brushing and linking35
Figure 3.6: Case-law document browser: overview and detail, and synchronized

scrolling ..36
Figure 3.7: One-to-many coordination, e.g. drill down ..37
Figure 3.8: Many-to-one-to-many coordination ...38
Figure 3.9: Coordination Graph...41
Figure 3.10: Connected components..42
Figure 3.11: Deriving coordinations with transitivity...43
Figure 3.12: Relationships between image and textual data ...46
Figure 3.13: Brushing and linking with multiple-tuple selection48
Figure 4.1: Snap Menu ..54
Figure 4.2: Scrolling list visualization ...56

x

Figure 4.3: Snap Specification dialog ..57
Figure 4.4: Overview and detail ..60
Figure 4.5: Save Group dialog, and Snap Menu opening a group...............................62
Figure 4.6: Attribute selector for drag-and-drop data extraction.................................63
Figure 4.7: Searching case-law documents ..64
Figure 4.8: Snap’s History window ...65
Figure 4.9: Including attributes in the Snap Menu list of tables..................................67
Figure 4.10: Data Compass ...68
Figure 4.11: Overview diagram...69
Figure 5.1: Snap’s software architecture..72
Figure 5.2: Coordination Operation ...80
Figure 5.3: Software modules..90
Figure 6.1: User interface specification for exercise 1 ...98
Figure 6.2: User interface specification for exercise 2 ...99
Figure 6.3: Average user performance time for tasks. .. 109
Figure 6.4: User interfaces grouped by user performance in tasks............................ 110
Figure 6.5: Average user subjective satisfaction. ... 112
Figure A.1: Web-site logs scenario... 123
Figure A.2: Census data scenario ... 124
Figure A.3: Photo libraries scenario ... 126
Figure A.4: Case-law scenario.. 128
Figure A.5: Highway incident data scenario ... 129
Figure A.6: Mailing address database scenario ... 131
Figure A.7: Files and folders scenario .. 132
Figure A.8: Stock market portfolio scenario ... 133
Figure A.9: Visible Human images scenario... 134
Figure A.10: Image map in IE ... 134
Figure B.1: A taxonomy of coordinations... 137
Figure B.2: XmdvTool ... 138
Figure B.3: Navigational View Builder .. 139
Figure B.4: Attribute Explorer.. 139
Figure B.5: LinkKit prototype in Elastic Windows... 140
Figure B.6: Synchronized scrolling .. 141
Figure B.7: SeeDiff .. 142
Figure B.8: Neighborhood Viewer ... 143
Figure B.9: Spreadsheet Visualization.. 143
Figure B.10: Overview and detail .. 144
Figure B.11: Simultaneous Menus... 145
Figure B.12: FilmFinder.. 146
Figure B.13: CASCADE... 147
Figure B.14: Information Mural .. 148
Figure B.15: SeeSoft ... 148
Figure B.16: PDQ Trees.. 149
Figure B.17: Visible Human Explorer ... 150
Figure B.18: PadPrints .. 151
Figure C.1: Overall 3x9 ANOVA statistics for user performance 155

xi

Figure C.2: Mean and standard deviation of user performance times (in seconds) 156
Figure C.3: Pair-wise t-test comparisons of user interfaces on user performance 157
Figure C.4: Overall 3x4 ANOVA statistics for subjective satisfaction 158
Figure C.5: Mean and standard deviation of subjective satisfaction ratings 158
Figure C.6: Pair-wise t-test comparisons of user interfaces on subjective satisfaction158

1

Chapter 1:
Introduction

1.1 Problem

In the field of information visualization, researchers and developers have created

many types of visualizations, or visual depictions of information [CMS99]. For

example, to display hierarchical information, one can choose from outliners, Hyperbolic

Trees [LR96], Treemaps [Shn92], fish-eye views [Fur86], etc. Each visualization has

different strengths. For example, Hyperbolic Trees may be appropriate for deep

unbalanced hierarchies, whereas Treemaps are helpful when nodes have numerical

attributes (see Figure 1.1).

Figure 1.1: Hierarchy visualizations: Outliner, Hyperbolic Tree, Treemap

User interface designers often coordinate multiple visualizations, taking advantage

of the strengths of each, to create even more powerful information exploration

2

environments [Shn98] [BWK00]. This technique is particularly potent when the

information is sufficiently complex to require different types of visualizations for

different aspects or layers. A simple example interface is Microsoft’s Windows

Explorer (Figure 1.2), which employs 3 visualizations to browse hierarchical file

systems: an outliner visualization of the folders, a tabular visualization of the files in

the selected folder, and a textual visualization of the details of the selected file including

a miniature quick-view.

Figure 1.2: Windows Explorer, three coordinated visualizations

Visualizations can be coordinated in a variety of ways. In information-exploration

interfaces, some common types of visualization coordinations [NS97] are:

• Brushing and linking: An exploratory data analysis (EDA) technique used

when displaying a set of data items in multiple visualizations. When users select

items in one visualization, those items are automatically highlighted in all the

3

visualizations. A common example is brushing scatter plots [BC87]. For

example, Figure 1.3 shows census data in Spotfire [AW95], a commercial data

analysis package. Selecting the states with low percentages of high school and

college graduates in the left plot reveals that those states also have low income

and high unemployment levels in the plot on the right.

Figure 1.3: Brushing and linking in Spotfire

• Overview and detail: Selecting an item in the overview visualization navigates

the detail visualization to the corresponding details. Items are represented

visually smaller in the overview. This provides context and allows direct access

to details. For example, web designers often add a table-of-contents frame to a

large document. Users can then select a section title to scroll the main frame

immediately to that section. In Figure 1.4, the user has selected the “Financial

Information” section of the Graduate Catalog.

4

Figure 1.4: Overview and detail with web frames

• Drill down: Allows users to navigate down successive layers of a hierarchical

database. Selecting a parent item in one visualization loads children items into

another visualization, as in Windows Explorer. This enables exploring very

large-scale data, by displaying aggregates in one visualization and the contents

of the selected aggregate in another visualization [FNP99].

• Synchronized scrolling: Users can conveniently scroll through multiple

corresponding data sets. Examples include alternate translations, music, and

information with summaries or annotations. In Figure 1.5, users of Logos Bible

Software [Log93] can simultaneously scroll through multiple bible translations

and commentaries by chapter and verse. This speeds users’ tasks such as

making comparisons or examining from multiple points of view.

5

Figure 1.5: Synchronized scrolling with Logos Bible Software

A coordinated-visualization user interface is defined as a set of visualizations and a

set of coordinations between the visualizations. In the literature, the phrase ‘multiple

views’ is often used instead but sometimes refers strictly to the brushing-and-linking

coordination. Hence, this dissertation uses ‘coordinated visualizations’ to refer to the

more general definition and to reflect the focus of this research on visualization.

Many coordinated-visualization interfaces have been implemented. However, two

confounding problems arise. First, the set of visualizations and coordinations needed in

any given situation depends heavily on:

• data: different data sets have different features and structure.

• tasks: what does the user want to accomplish with the data?

• users: there is tremendous variation between users in individual user

preferences, experience levels, etc.

For example, while Windows Explorer is helpful for some users and tasks, system

administrators may need alternate visualizations. Replacing the outliner visualization of

6

folders with a scatter plot of the folders would enable administrators to quickly spot

large old folders for archival. In Figure 1.6, the scatterplot and hyperbolic tree display

the folders, enabling users to examine size and date trends as well as hierarchical

structure. Selecting a folder displays its files in the tabular visualization. Selecting a

file displays its contents in the file viewer.

Figure 1.6: A coordinated-visualization interface for browsing folders and files.

Secondly, the implemented visualizations are typically not programmed to

coordinate together. Hence, these alternate combinations usually require custom

development. Researchers stumble over this problem often, and must constantly re-

7

implement coordinations between new unforeseen combinations of visualizations.

Unfortunately, this is a poor solution to the problem. Even with good component-based

design, these hard-coded combinations are inflexible and difficult to construct.

Clearly, the number of needed combinations of visualizations and coordinations

explodes exponentially, and implementation becomes intractable. Hence, the control of

the choice of coordinated-visualization interface needs to be in the hands of the users.

A lightweight mechanism is needed to allow end-users to easily “snap” individual

visualizations together into custom combinations. This must not be a toolkit that

requires programming, but a user interface.

1.2 Snap-Together Visualization

Snap-Together Visualization (Snap) [NS00a] is a conceptual model, user interface,

architecture, and implemented system developed to meet these needs. Snap enables

data users to rapidly and dynamically mix and match visualizations and coordinations to

construct custom exploration interfaces without programming. Snap is flexible in data,

visualizations and coordinations. Snap focuses on (a) interconnecting the visualization

tools created by researchers and developers in the field to (b) construct coordinated-

visualization interfaces for rapid exploration and navigation of data and relationships.

Snap is based on the relational data model. To explore a database, users first

display relations (tables or query results) in visualizations. Then they construct

coordinations by specifying actions to tightly couple between the visualizations.

Visualization developers can easily make their independent visualizations snap-able

using a simple API.

8

1.2.1 Scenario

This scenario demonstrates step-by-step how Snap is used to construct the file-

folder browser for system administrators as described in the example in the introduction

(see [NS99] video for dynamic interaction). First, the database containing the folder

and file information is opened with Snap. The Snap Menu window (Figure 1.7)

displays the list of tables and queries in the database (left), as well as a list of available

visualization types (right). To view the folders in a Spotfire scatter plot, the table

containing folder information is dragged from the list and dropped onto the scatter plot

button. The plot opens, loads, and displays the folders. Choosing ‘creation date’ for the

X-axis and ‘size’ for the Y-axis establishes the desired visualization. Now it is easy to

spot the large old folders in the upper left of the plot. Of course, users need to see the

files contained in the folders. Dragging the query that extracts only the files within a

given folder, and dropping it onto the tabular visualization button opens the new

visualization.

Each visualization window is adorned with a snap button . To coordinate

the visualizations, the snap button is dragged from the plot to the tabular visualization

(Figure 1.8). The Snap Specification dialog (Figure 1.9) then displays the available

actions in each visualization that can be tightly coupled. Choosing the ‘select’ action in

the plot and the ‘load’ action in the tabular visualization specifies that selecting a folder

in the plot should load and display the files in that folder into the tabular visualization.

Now, construction of the coordinated-visualization interface is complete (Figure

1.10). Users can browse by simply selecting folders in the plot and viewing contents in

the tabular visualization, like Windows Explorer.

9

Additional visualizations could be added to further improve the interface (as in

Figure 1.6). For example, if the context of the folders in the hierarchical structure is

important, then users might load the folders into Inxight’s Hyperbolic Tree. They could

coordinate this to the scatter plot so that selecting a folder in either visualization would

also select and highlight it in the other. To examine the contents of many files, users

could coordinate a file viewer onto the tabular visualization.

Figure 1.7: Opening visualizations

Figure 1.8: Coordinating visualizations

10

Figure 1.9: Specifying the coordination

Figure 1.10: Operating the constructed interface

11

1.3 Research Questions

In providing Snap as a solution to the stated problem, this research must provide

answers to several important questions.

First, the concept of visualization coordination is not well understood. Coordination

has been only loosely viewed as a form of interaction. There has been no categorization

of types of coordination, nor formal theory of coordination. Already the above

definition of a coordinated-visualization interface is a significant advance in

understanding the concept. How can visualization coordination be formally modeled?

Second, how can end-users construct their own coordinated-visualization interfaces

without programming? What user interface will enable them to accomplish this?

Third, how can the software architecture provide such flexibility, and enable the use

of independent visualization tools developed by others? The effort required by

visualization developers to enable their tools must be minimized, while maximizing the

functionality available to users.

Finally, empirical evaluation is needed to understand users ability to construct and

operate coordinated visualizations. Do users understand coordination between

visualizations? Can they construct their own coordinated-visualization environments to

support their tasks? Can they use it to their benefit? If there is a benefit, why and what

are the critical aspects of the coordinated visualizations that causes improvement? In

general, user interface design requires significant expertise, but Snap puts some design

capability in the hands of users. Can users essentially design their own user interfaces

for information exploration by snapping together appropriate visualizations?

12

1.4 Scope

Snap focuses on coordinations between visualizations for information exploration.

Snap does not address other classes of tasks such as data input or editing.

Snap focuses on the common types of data and visualizations that are typically

encountered in the field of information visualization, such as databases, file directories,

statistical tables, etc. It is less concerned with scientific visualization applications

which are often more oriented towards image processing.

Snap focuses on common coordinations for information exploration. There are

other kinds of coordination for data manipulation consistency, dynamic data,

collaboration, etc.

1.5 Content

Chapter 2 reviews related literature, and provides a framework of the space that

Snap fits within. Chapter 3 describes Snap’s foundational model of visualization

coordination. Chapter 4 describes Snap’s user interface for coordination construction.

Chapter 5 describes Snap’s architecture that enables independent visualization tools.

Chapter 6 details two empirical studies of coordination construction and operation.

Chapter 7 concludes with benefits, limitations, contributions, and future work.

Appendix A demonstrates Snap with several additional scenarios to show its breadth

and usefulness. The file-folders scenario presented above (Figure 1.6) is used

throughout the dissertation for examples.

13

Chapter 2:
Related Work

2.1 Conceptual Models of Coordination

Previous work on multiple window strategies [Shn98], [NWS86], [SSS86],

[WH87], [CPF84], [Woo84] have loosely characterized a few examples of coordination.

In statistical graphics, the brushing-and-linking coordination has been formally defined

[BC87] and software architectures specified [MSB90]. In general, these systems add a

color attribute to the underlying data records. Brushing a data point modifies the color

attribute of its record, and affects its display in other plots. In the image-browsing

domain, the overview-and-detail coordination has been formally defined [PCS95] using

constraints between a field-of-view box in the overview and the panning scroll bars in

the detail (Figure 2.1).

Figure 2.1: Overview and detail specification for image browsing

14

2.1.1 Object-based vs. Attribute-based Coordination

In general, coordination in information visualization can operate as either object-

based or attribute-based. In object-based coordination, users interact with individual

data objects such as folders and files, data points, etc. Brushing and linking data points

is an example. Yet, while object-based coordination is the more common form of

interaction, no formal model comprehensively describes the behavior of the common

coordinations in the object-based approach.

In attribute-based coordination, users interact with the attribute space containing the

data objects. This has two primary uses: spatial navigation and filtering. Spatial

navigation in 2D and 3D spaces is used in coordinating the panning and zooming of

data plots with common axes and image browsers, based on attribute ranges. Filtering,

as in Dynamic Queries [AS94], enables selection or elimination of data points by

specifying attribute ranges in queries. These applications have been well specified.

Snap focuses on object-based coordination, because it is the more common form of

interaction and of more general utility to information visualization, and has not been

well explored. Object-based coordination is more general in terms of supporting many

different types of data and visualizations.

2.2 Flexibility in Coordinated Visualization

Systems with coordinated-visualization user interfaces can be classified by their

level of flexibility in data, visualizations, and coordinations:

1. Data flexible: users can load their own different data sets into the

visualizations.

15

2. Visualization flexible: users can choose different sets of visualizations as

appropriate for the data.

3. Coordination flexible: users can choose different types of coordinations

between pairs of visualizations as needed for exploring or navigating

relationships in the data.

Some systems are not intended for flexibility. For example, Windows Explorer

always displays the same data set (the hard drive file structure), with the same

visualizations and coordinations.

2.2.1 Data Flexible

Most systems are at the first level of flexibility. They are flexible for data but not

for visualizations or coordinations. Users can load their own data, but are always

presented with the same hard-coded coordinated-visualization interface.

For example, the Treemap visualization tool (Figure 2.2) can load and display any

hierarchical data set of users’ choosing, but remains constant in its pair of visualizations

(the Treemap visualization and the details pane) and the coordination between them

(selecting a node in the Treemap displays associated data in the details pane).

Many data-flexible systems have been implemented, covering a variety of domains.

Appendix B provides a taxonomy of these systems, based on the types of coordinations

they use, with descriptions of many of the systems.

16

Figure 2.2: Treemap (left), and details pane (top right)

2.2.2 Visualization Flexible

At the second level of flexibility, systems are flexible in choice of visualizations

(and data). However, users cannot establish a different type of coordination between

two visualizations with these systems.

Exploratory data analysis (EDA) systems, such as Datadesk [Vel88], SAS

Insight/JMP, EDV [EW95] (Figure 2.3), and Spotfire [AW95], display a data table in

many different types of visualizations of users’ choosing such as scatter plots, bar charts

or histograms. All the visualizations are coordinated for brushing-and-linking, allowing

users to relate data points across visualizations. These systems provide a toolbox of

visualizations that users can choose from (as in Figure 2.4). In each of these systems,

the brushing-and-linking coordination is a fixed and global operation in their interfaces.

17

Some systems such XGobi [BCS96] let users specify many options for the brushing,

such as accumulation, color, glyphs, etc.

Figure 2.3: EDV, brushing and linking

Figure 2.4: SAS JMP visualization toolbox menus

18

In databases, Visage [RLS96] extends the brushing coordination to multiple tables

by brushing across relational joins. With Visage’s “information-centric” approach,

users can drag-and-drop data items between visualizations to display them in different

ways. The Visage VQE [DRK97] component also coordinates dynamic queries across

all visualizations within a VQE window. The Visage SAGE component (Figure 2.5)

generates different types of visualizations. Users specify the visualization by

associating data attributes with visual elements.

Figure 2.5: Visage’s SAGE specifying a horizontal bar chart

2.2.3 Coordination Flexible

At the third level of flexibility, systems are flexible in the coordinations between

visualizations (and generally flexible in data and visualizations too). There are two

kinds of flexibility in coordination: choosing the visualizations to coordinate, and

specifying the type of coordination between them.

19

Most of these systems provide only one type of coordination but let users choose

which visualizations to coordinate. The Apple Dylan programming environment

[DP95] (Figure 2.6) lets users browse hierarchical object-oriented programs by splitting

and linking frames so that selecting a folder in one frame displays its contents in the

other frame (e.g. generalized Windows Explorer). To link frames, users drag the

‘output arrow’ from one frame to the ‘input arrow’ of another frame. Spreadsheet

Visualization [CBR97] (Figure 2.7) arranges many small 3D visualizations as cells in a

2D grid. Then, users can select a whole row or column of visualizations to synchronize

their 3D navigation. With Logos Bible Software, users can coordinate scrolling text

windows of different translations and commentaries to synchronize scroll based on

chapter and verse. Users select from a window list to synchronize one window to

another (Figure 2.8).

Figure 2.6: Apple Dylan with three split and linked frames

20

Figure 2.7: Spreadsheet Visualization

Figure 2.8: Logos dialog for choosing windows to synchronize scroll

DEVise [LRB97] allows users to select some different types of coordinations

between visualizations. In plots with common axes, users can synchronize panning and

zooming between plots or create a field-of-view box in one plot to control another

(Figure 2.9, Figure 2.10). Users can also establish set operations between visualizations

so that the data in several visualizations can be combined and displayed in another

21

visualization. Various menus and dialog boxes are used to establish these

coordinations. It is interesting that the mechanisms for establishing each type of

coordination are very different in the DEVise user interface. As in Visage, users create

visualizations by mapping data attributes to visual elements.

In the image-browsing domain, LinkKit [Nor98] (Figure 2.11) allows users to

display and coordinate different 2D views of the Visible Human 3D image data. Users

can coordinate views for orthogonal slicing, synchronized slicing, and panning by field-

of-view box.

Figure 2.9: DEVise, three bar charts synchronized by date on the X-axis

Figure 2.10: DEVise dialog for specifying plot attributes to synchronize

22

Figure 2.11: LinkKit navigating the Visible Human

Snap builds on these systems. It borrows Visage’s information-centric approach

(object-based), making individual information items the basis of coordination rather

than 2D information-space axes as in DEVise or LinkKit (attribute-based). Snap uses a

drag-and-drop action similar to Apple Dylan to select visualizations to coordinate.

However, Snap’s coordination model, specification user interface, software architecture

and ultimate purpose are unique. Snap allows users to construct a variety of common

coordinations quickly and easily.

Snap also differs in its use of independent visualizations. Each of these systems

uses a fully integrated architecture, in which visualizations are implemented within the

system itself. Snap’s architectural approach is similar to that of the Cyberdesk

prototype [DAP97], which allows users to select text in any window and then choose a

“service”, such as a web search or address book application, to display search hits for

that text. Independent applications can easily register themselves as an available

service.

23

2.3 Construction in Visualization

There are a variety of other approaches used for construction in visualization

environments.

In scientific visualization, data-flow systems such as ConMan [Hae88], AVS, and

IBM Data Explorer (Figure 2.12), also employ a form of dynamic linking, but for a

different purpose. Users link a variety of modules to create custom data processing and

visualization pipelines, much like pipes on the Unix command line. Complex data

structures are passed between modules. Some modules computationally transform the

data before passing it on, and some display the data graphically. In contrast, Snap

focuses on coordinating user interaction in visualizations. Snap coordinations transmit

interaction rather than data, and coordinations are bi-directional like constraints rather

than pipes.

Figure 2.12: IBM Data Explorer, data-flow (right) and visualization (left)

24

Filter-flow systems such as Linkwinds [JBO94] (Figure 2.13) behave similar to

data-flow systems, but provide interactive data filtering capability. Users link dynamic

query filter controls and visualizations in a pipeline network. Selecting attribute ranges

in a control or visualization filters the data displayed downstream in the pipeline.

Figure 2.13: LinkWinds

Constraint-based tools allow users to construct interactive displays by specifying

various mathematical relationships between objects. These systems are generally

intended for specification of more complex interaction within a visualization. For

example, with ThingLab [Bor86] users can construct complex interfaces that respond to

direct manipulation interaction. [HM90] provides a simplified constraint-based

specification for visual layout of objects in a user interface that adjusts to resizing.

25

LiveDocs [MHG00] and InfoStill [CHH99] allow authors to easily publish

visualizations as interactive data reports. Authors can place a few different types of

data plots (coordinated for brushing and linking) within context on a web page, and use

hypertext links to invoke various saved states of the visualizations.

At the opposite end of the spectrum from Snap are visualization programming

toolkits. Toolkits provide programmers with a library of reusable visualization

primitives. However, coordination beyond brushing-and-linking is rarely included as a

primitive. Amulet [MMM97] includes constraint capabilities that can be helpful for

implementing coordinations, but are still at the programmer level. Technologies such as

COM and CORBA [Vin97] are improving programmers’ capability to establish

communication between independent applications, a key ingredient for coordinating

independent visualizations.

2.4 Evaluation

Little work has been done to study and evaluate the use of coordinated

visualizations. Several empirical studies have compared specific coordinated-

visualization interfaces to other approaches such as fish-eye visualizations and detail-

only visualizations for browsing hierarchies [CS94] [SSS86] and large 2D spaces

[BW90] [PCH92]. In general, these studies indicate an advantage of coordinated

visualizations over single detail-only visualizations. However, the studies did not

determine why or what aspect of the coordinated visualizations caused improved

performance. Was it the additional information displayed in the multiple visualizations

or the interactive coordination between them?

26

Even less is known about users’ ability to construct such coordinated exploration

environments. Usability work on Apple Dylan [DP95] indicates that once users were

shown how to split and link its frames, they were able to remember it. Users were

successful with Dylan’s single type of data, visualization, and coordination. However,

will that carry over to a general coordinated-visualization environment? Can users

grasp the notion of establishing different types of coordinations between different types

of visualizations? Can users construct appropriate interfaces for themselves this way?

Clearly, a deeper level of understanding about users and coordination is needed.

2.5 Summary

These systems provide a foundation of visualization coordination and flexibility that

Snap builds on (see Figure 2.14). Snap is a coordination-flexible level system,

providing flexibility in data, visualizations, and coordinations. Snap users can construct

many common types of coordinations, more than the brushing-and-linking provided by

Visage and its cousins. It also uses the object-based approach, which enables more

general utility for information visualization interfaces than the attribute-based approach

of DEVise. In addition, Snap employs independent visualizations, enabling it to be

easily extended by others, whereas each of these systems is monolithic.

 Independent
visualizations

Integrated
visualizations

Data
Flexible

COM, CORBA Toolkits, C++

Visualization
Flexible

Snap EDA systems,
Visage

Coordination
Flexible

Snap DEVise
(attribute-based)

Figure 2.14: Constructing coordinated visualizations

 27

Chapter 3:
Model of Visualization Coordination

3.1 Background

Snap-Together Visualization is based on a strong underlying model of visualization

coordination (the Snap model). The goal of this model is to provide a sound theoretical

foundation on which the Snap system, user interface, and software architecture can

operate. It must have sufficient generality to support:

• common types of information, such as numeric, textual, hierarchical, etc.

• common types of visualizations from the field.

• common types of coordinations for information exploration.

The model must also maintain sufficient simplicity to remain in harmony with the

practical architectural goals of integrating independent visualizations. The Snap model

formally defines a visualization, coordination, and a coordinated-visualization interface.

In the search to develop this model, several attempted models of coordination were

explored but discarded due to their inability to provide a generalizable solution. These

included:

• Filter model: a network of filters between visualizations.

• Widget model: user-interface widgets linked using mathematical functions, like

constraints.

• User input model: mouse clicks in one visualization are translated to clicks in

another visualization.

 28

Two critical realizations led to the development of the current model: First, the

recognition of coordination as a visualization problem. That is, coordination deals with

each visualization as a whole, not just individual widgets or components within

visualizations. Since a visualization is a view of data, it is essentially the data that is

being coordinated. Hence, coordination is data dependent.

Second, the recognition of the need for a strong underlying data model to enable a

strong coordination model. For example, Isakowitz was successful with RMM [ISB95]

because he used a strong underlying relational data model to drive the construction of a

web site’s pages and hyperlinks.

3.2 Relational Model of Visualization Coordination

The Snap model is based on the relational data model. The relational data model

provides several benefits:

• A popular, well-defined, and general-purpose data format.

• Consistency with common visualization practice.

• Unique identifiers (primary-key values) for tuples.

• Well-defined data extraction capability (queries).

• Explicit representation of relationships (joins).

3.2.1 Relational Schemata

With the Snap model, coordinated-visualization interfaces can be constructed to

explore relational data. The data is composed of a set of relations, each of which

contains a set of tuples. Each relation specifies a list of attributes for which its tuples

contain values. Each relation has a primary-key attribute, whose values uniquely

identify each tuple in the relation. Relations may also have a set of foreign-key

 29

attributes, each of which relates tuples in its relation to tuples in another relation via

joins.

Actually, the pure relational data model does not explicitly code the primary-key

and foreign-key join relationships between relations. The relationships are only evident

when join queries are defined. However, modern relational database management

systems such Microsoft Access and Oracle do explicitly specify the relationships in

schema diagrams and store them in the form of constraints. A schema diagram shows

the relations and their attributes as nodes, and the join relationships as edges between

them. For example, Figure 3.1 shows the Access schema diagram of the file-folders

database from the example in Chapter 1. There is a one-to-many relationship from

folders to files.

Figure 3.1: Schema diagram

3.2.2 Snap Model Overview

With the Snap model, coordinated-visualization interfaces for relational data are

constructed based on the data schema. There is a direct correspondence between

 30

concepts in the relational data model and concepts in coordinated-visualization user

interfaces (see also Figure 3.2):

Relational Data Model Coordinated-Visualization User Interface

Relation = Visualization

Tuple = Item in a visualization

Primary key = Item ID

Join = Coordination

In Snap, a visualization displays a relation. Coordination between two

visualizations is based on the join relationship between their relations. This is

somewhat similar to RMM [ISB95], which generates hyperlinks based on join

relationships.

Table:
Folders

Table:
Files

1 M

Viz:
Plot

Viz:
Tabular

Coordination

Load

Join

Select

Relational
Data:

User
Interface:

Figure 3.2: Snap model

 31

3.2.3 Relations into Visualizations

In the Snap model, a visualization is defined as the use of a visualization type (e.g.

scatter plot, Treemap, etc.) to display a single relation from the data. Hence, a

visualization is defined as the pair:

Visualization = (visualizationType, relation)

 There are two classes of visualizations:

• Relation visualizations: In the common case, a relation of many tuples is

displayed in the visualization. Generally, each tuple in the relation is depicted as an

individual item in the visualization. For example, a scatter plot displays each tuple as a

dot using two of its attributes as the coordinates (Figure 3.3). A tabular visualization

displays each tuple as a row. The relation must have a primary-key attribute to uniquely

identify individual tuples.

• Single-tuple visualizations: A single tuple is displayed in the visualization.

This type of visualization is often used in two common situations: First, a textual

visualization used as the detail view in a details-on-demand coordination to display all

the attributes of a single tuple selected in another graphical visualization (Figure 3.3).

Second, one or more of the tuple’s attribute values are used to locate and display

information stored external to the data. For example, a web browser displays a web

page given its URL, or a file viewer displays a file given a pathname. These are output-

only visualizations.

 32

Figure 3.3: Relation visualization (left), single-tuple visualization (right)

3.2.3.1 Visualization Actions

Visualizations are interactive. Each visualization supports a set of actions that can

be performed on individual tuples. These actions can be invoked interactively by users,

allowing them to indicate interest in a tuple, or programmatically by the system. These

actions are called primary-key actions, because the tuple acted on can be identified by

its primary-key (PK) value. Example actions include:

• Select: select a tuple to visually highlight it. For example, clicking on a dot in a

scatter plot colors the dot bright yellow.

• Scroll, zoom, etc: navigating to a tuple to bring it to the center of view. For

example, scrolling a textual list to bring an item to the top of the window, or

zooming onto a node in a Treemap, or centering the focus on an item in a fish-

eye visualization.

 33

Since actions are visualization dependent, each visualization defines the set of

actions it supports (providing a name for each action) according to the interaction

mechanics of the visualization’s user interface. In general, visualizations have two

types of actions: selection actions and navigation actions. For example, Treemap has

three actions:

• Select click: clicking on a node highlights it with a yellow rectangle.

• Select mouse-over: moving the mouse over a node highlights it with a white

rectangle.

• Zoom: double-clicking a node zooms that node to fill the view.

In addition, each visualization also has a load action. The load action loads and

displays only the specified tuple(s) from the relation into the visualization. When used

as a primary-key action, a single tuple identified by its primary-key value is loaded into

the visualization. This is used with single-tuple visualizations.

The load action can also be used as a foreign-key action. In this case, multiple

tuples, identified by the value of one of their foreign-key (FK) attributes, are loaded into

the visualization. The specified value is thus a primary-key value of a tuple in a joined

relation, and hence the loaded tuples are all related to that tuple.

When a load action is invoked, the visualization is first cleared so that only the

tuples from the current load action are displayed. This enables a visualization to be

used to display different portions of a large relation based on external input. If the load

action is not used, then the entire relation is displayed in the visualization.

Hence, an action invocation can be expressed as a triple:

Invocation = (visualization, action, PKvalue)

 34

That is, action is invoked in visualization on a tuple identified by PKvalue. If the

action is load, then it must also specify primary-key or foreign-key action. Foreign-key

actions specify the foreign-key attribute to use. E.g. load(PK), or load(FKi).

 Visualization

(Relation)

Select (PK)

Scroll (PK)

Load
(PK, FKi)

Primary/foreign-
key values …

Figure 3.4: Diagram of a visualization and its actions

3.2.4 Coordinating Visualizations

In the Snap model, a coordination tightly couples an action in one visualization to

an action in another visualization. Thus, when users invoke the former action, Snap

automatically invokes the latter, and vice versa. The tuples acted on in each

visualization are related by the join between their relations. When users invoke one of

the actions, joining the visualizations’ relations determines the corresponding tuples to

act on in the other visualization.

Hence, a coordination is defined as an action-invocation pair:

Coordination =

 ((visualization1, action1, PKvalue), (visualization2, action2, PKvalue))

The PKvalue is bound between the two invocations. Since this can be assumed, the

short-hand notation is:

Coordination = ((visualization1, action1), (visualization2, action2))

 35

A coordination between a pair of visualizations is established by choosing the

actions to tightly couple. The join relationship between the visualizations’ relations

determines which of the three possible combinations of primary-key and foreign-key

actions can be used:

3.2.4.1 One-to-One: Primary-Key to Primary-Key

This is a primary-key to primary-key relationship, and is often the result of

displaying different projections of the same table in multiple visualizations. A primary-

key action in one visualization can be tightly coupled to a primary-key action in the

other, linking their primary-key values. Hence, when one of the actions is invoked, the

other is also invoked on the same primary-key value.

Visualization

(Relation)

Select (PK)

Scroll (PK)

Load (PK)
…

Visualization

(Relation)

Select (PK)

Scroll (PK)

Load (PK)
…

Figure 3.5: One-to-one coordination, e.g. brushing and linking

Examples of one-to-one type coordinations, from Chapter 1, are:

• Brushing and linking:

Coordination: ((visualization1, select), (visualization2, select))

Operation: Selecting an item in one visualization also selects (highlights) the

corresponding item in the other visualization. For example, in the file-folder

example in Chapter 1, selecting a folder in the Hyperbolic Tree highlights that

folder in the scatter plot. Figure 3.5 shows the coordination specification.

 36

• Overview and detail:

Coordination: ((overview, select), (detail, scroll))

Operation: Selecting an item in the overview scrolls (or more generally

navigates) the detail visualization to the details of that item. Likewise, scrolling

the detail selects the currently viewed item in the overview. For example, in

Figure 3.6, selecting a document section from the list on the left jumps the

scrolling document text on the right to that section.

• Synchronized scrolling:

Coordination: ((visualization1, scroll), (visualization2, scroll))

Operation: Scrolling through a list of tuples in one visualization also scrolls to

corresponding items in another visualization. For example, in Figure 3.6,

scrolling the document text on the right also scrolls the document annotations in

the center to the corresponding section.

Figure 3.6: Case-law document browser: overview and detail, and synchronized
scrolling

 37

3.2.4.2 One-to-Many: Primary-Key to Foreign-Key

A primary-key to foreign-key relationship indicates a hierarchical structure between

the relations. Each parent tuple in the first relation has many child tuples in the second

relation.

The allowable combination is: tightly couple a primary-key action in the

visualization on the One side of the relationship with a foreign-key action on the Many

side. This links the primary-key value of the primary-key action to the foreign-key

value of the foreign-key action. When the primary-key action is invoked, the foreign-

key action is also invoked using the primary-key value as the foreign-key.

Visualization

(Relation)

Select (PK)

Scroll (PK)

Load (PK)
…

Visualization

(Relation)

Select (PK)

Scroll (PK)

Load (FK)
…

Figure 3.7: One-to-many coordination, e.g. drill down

A common coordination for this relationship type is:

• Drill down:

Coordination: ((parentViz, select), (childViz, load(FK)))

Operation: Selecting an item in the parent visualization loads related items into

the child visualization. For example, in the file-folder example, selecting a

folder in the plot loads and displays the files related to that folder in the tabular

visualization.

 38

3.2.4.3 Many-to-One-to-Many: Foreign-Key to Foreign-Key

This is an implicit relationship that occurs when two relations share a common

foreign-key attribute. That is, a shared parent relation has a one-to-many join with both

relations.

In this case, a foreign-key action can be coupled to a foreign-key action. A

load(FK) to load(FK) coordination is often used when it is desired for two

visualizations to display different descendants of the same parent. For example, the

U.S. states have counties and voting districts. Two visualizations could be coordinated

to always display the counties and districts (respectively) of the same state.

Visualization

(Relation)

Select (PK)

Scroll (PK)

Load (FKi)
…

Visualization

(Relation)

Select (PK)

Scroll (PK)

Load (FKi)
…

Figure 3.8: Many-to-one-to-many coordination

There is one restriction on foreign-key actions. While a visualization may have

several different load actions available (primary key and for each foreign key), only one

of these load actions can be tightly coupled at a time. Thus, all other visualizations that

coordinate to a visualization’s load action must use the same key attribute.

3.2.5 Schema Management

In the Snap model, if additional visualizations or coordinations are desired beyond

what is available in the data schema, then additions can be made to the schema. That is,

if the schema graph does not translate to the desired coordinated-visualization behavior,

 39

than simply modify the schema. Hence, with Snap, advanced coordination is simply a

schema manipulation problem rather than a custom user-interface programming

problem.

Schema management is used in two situations: creating queries to generate desired

visualizations, and establishing relationships to generate desired coordinations.

First, when the data tables in the schema do not provide the appropriate relation

needed for a visualization, then a query (view) can be created to generate the desired

relation. There are three common situations in which queries are used to generate

desired visualizations. Each is based on a single source table. The query can be added

to the schema, with a join relationship to its source table. The query must also inherit a

primary-key attribute from its source table.

• Projection: This is often used when only a subset of the attributes of a relation

are needed for a visualization. The query is one-to-one with the original

relation.

• Selection: This is used to display a subset of the tuples of a relation. It is one-

to-one with the original relation.

• Aggregation: This aggregates tuples in a relation, and is often used to create

drill-down coordinations. It is one-to-many to the original relation. The

GROUP-BY attribute is used as its primary-key attribute.

Second, if the schema has no direct primary-key or foreign-key relationship between

two relations, then a coordination cannot be established between their visualizations.

However, if there is an indirect path through other relations, then it is generally possible

 40

to modify the schema to generate the appropriate behavior. For example, a query could

be created that joins the relations along the path.

3.3 Graph Model of Composite Coordinations

The previous section examined coordinating two visualizations together. Now, this

is expanded to composing many visualizations with many coordinations. Coordinated-

visualization interfaces can be defined using a graph model. Expanding on the above

definitions for a visualization and a coordination, a coordinated-visualization interface

(CVI) is defined as a set of visualizations (V) and a set of coordinations (C) between

them:

CVI = (V, C), where

V = {v1, … , vn}, vi = (visualizationType, relation)

C = {c1, … , cm}, ci = ((vj, actionj), (vk, actionk)), where vj,vk ∈ V.

This is a graph in which nodes are visualizations and edges are coordinations.

Edges are labeled at both ends with the actions that are tightly coupled in the

coordination. In the Snap model, since visualizations correspond to relations and

coordinations correspond to joins, the coordination graph corresponds directly to the

data schema graph. For example, Figure 3.9 shows the coordination graph for the file-

folders interface for system administrators from Chapter 1.

This model indicates several properties that further describe how coordinated-

visualization interfaces operate as follows.

 41

Hyperbolic
Tree
(Folders)

Select

Load (PK)

Load (FK)

Scatter plot
(Folders)

Tabular Viz
(Files)

File Viewer
(Files)

Select

Select

Select

Figure 3.9: Coordination Graph

3.3.1 Commutative

((vj, actionj), (vk, actionk)) ⇔ ((vk, actionk), (vj, actionj))

Snap coordinations are bi-directional, so that either action triggers the other. For

example, selecting a folder in the Hyperbolic Tree highlights it in the scatter plot, and

by commutativity, selecting in the plot highlights in the Hyperbolic Tree. Note,

however, that each action is strictly tied to its visualization. Hence:

actionj ≠ actionk ⇒ ((vj, actionj), (vk, actionk)) ≠ ((vk, actionj), (vj, actionk))

3.3.2 Transitive

((vi, actioni), (vj, actionj)) ∧ ((vj, actionj), (vk, actionk))

 ⇒ ((vi, actioni), (vk, actionk))

Coordinations can be chained end-to-end. Invoking an action at one end will

propagate down the chain, triggering actions at each visualization. All visualizations

related by transitivity to the visualization where the action is invoked will have their

coordinated actions invoked. For example, brushing-and-linking can be established

across three visualizations. In the file-folder example, selecting a folder in the

 42

Hyperbolic Tree also selects it in the plot, which in turn loads files into the tabular

visualization.

Invoking an action on any visualization in the coordination graph essentially

initiates a graph traversal. Coordinations only propagate at each visualization if the

incoming action from one coordination matches the out-going action of the next. For

example, selecting a folder in the plot loads files into the tabular visualization, but does

not cause any action on the file viewer. Formally:

((vi, actioni), (vj, actionj)) ∧ ((vj, actionx), (vk, actionk))

 ⇒ ((vi, actioni), (vk, actionk))

Hence, a connected component can be defined as a subset of a CVI containing all

visualizations and coordinations related by transitivity to a single visualization action

invocation. Connected components are essentially spheres of interaction in the

coordinated-visualization interface. The file-folder example has two connected

components: selecting folders, and selecting files (Figure 3.10).

Hyperbolic
Tree
(Folders)

Select

Load (PK)

Load (FK)

Scatter plot
(Folders)

Tabular Viz
(Files)

File Viewer
(Files)

Select

Select

Select

Figure 3.10: Connected components

 43

Using the expanded notation for coordination (viz, action, PKvalue) with transitivity

shows that only the primary-key value of the action initiated by the user is propagated

during the traversal of a connected component.

The transitive property enables the deduction of coordinations. For example, given

three visualizations and two transitive coordinations connecting them, the third

coordination can always be deduced. Figure 3.11 shows the 4 possible transitive

combinations of the three relationship types (PK-PK, PK-FK, FK-FK). For example, in

the top right diagram describes the file-folder example as C=Hyberbolic, B=plot,

A=tabular. The coordination C-A can be derived as select to load.

PK

A

B C

PK

PK PK

A

B C

FKi

PK

FKi

A

B C

PK

FKi FKi

A

B C

FKi

FKi

Figure 3.11: Deriving coordinations with transitivity

 44

3.3.3 Conflict Free

An important property of the Snap model is that its coordinations are conflict free.

In designing systems that use coordination, there is often a concern about possible

conflicts due to cycles in the coordination graph. For example, in an exotic scenario,

selecting a U.S. state on a map might coordinate to highlight the state’s governor in a

list of the 50 governors, which might then coordinate to highlight the governor’s birth

state on the map. This creates a cycle and would then attempt to highlight the governor

of that state, etc. A conflict occurs when the same action is invoked on the same

visualization twice (or more) with different primary-key values in a single coordination

execution cycle. Conflicts can result in endless looping or mismatched state between

visualizations.

However, cycles in Snap are always redundant and never conflicting. That is, when

a coordination propagation visits a visualization a second time due to a cycle, the

primary-key value given is always the same value for both visits, resulting in a

redundant action and not a conflict. This is because only a single primary-key value is

propagated during a single coordination traversal. This is easily proven using the

transitive property. When deriving a self-coordination using transitivity around a cycle,

the result clearly shows the equality of the PKvalue:

((vj, actionj, PKvalue), (vj, actionj, PKvalue))

Hence, the Snap model would not allow the above exotic example to be constructed.

The offending component is the ‘birth state’ coordination. This is a one-to-many

relationship from states to governors, and hence cannot support a select (PK) to select

 45

(PK) coupling. A potential solution is to employ a third visualization to display the

birth state. From a user’s point of view, this would make more sense anyway.

A mark-on-visit traversal algorithm can be used to detect and stop cycles (self-

coordinations). Each action of a visualization is marked independently. Thus, a

visualization can be visited twice, but only for different actions.

3.3.4 Subgraphs

Subgraphs can be easily added to or extracted from a coordinated-visualization

interface. These subgraphs are themselves CVI’s. Hence, this enables the saving and

reusing of CVI’s. A saved coordinated-visualization interface can be immediately

instantiated and coordinated to other visualizations. Essentially, this enables the

construction of composites as new primitives. This powerful notion resembles how

programs or macros are saved for later use in more complex programs.

3.4 Applications and Limitations

The Snap model captures a variety of types of data, visualizations, and

coordinations that are commonly used in information visualization. Appendix A

describes Snap’s use in a diverse set of examples, including census statistics, GIS maps,

case-law textual information, photo libraries, hierarchical file structures, web sites, and

address databases. The model exploits existing functionality of visualizations and

exploits data relationships to enable coordinations for navigating and exploring

information.

The Snap model focuses on interaction with individual data objects (i.e. relational

tuples). Hence, this model is not well suited for attribute-based spatial coordinations,

such as large 2D or 3D image browsing applications and scientific visualization.

 46

Navigation in these applications is often based on pixels or voxels, as in the Visible

Human Explorer [NSP96] for example. While it would be possible to model images in

a relational data model (e.g. pixel = tuple), it simply is not very practical.

However, such spaces often have meaningful objects embedded, in which case the

Snap model is very appropriate. For example, the Visible Human 3D image data

contains segmented anatomical structures with links to databases of anatomical

information such medical terminology dictionaries. Figure 3.12 shows a mockup from

early work on Snap which uses brushing and linking between anatomical objects in the

image data (like an image map) and terms in the Medical Subject Headings hierarchical

dictionary [Nor98]. In fact, based on extensive work on 3D image browsing with

medical domain experts [CSP97], Konstan discovered that the experts desired these

types of cross-media database coordinations more than the spatial navigation

coordinations [Kon97].

Figure 3.12: Relationships between image and textual data

 47

The embedding of meaningful objects is also found in other domains as well. For

example in continued work on Pad++ [BH94], a zoomable user interface in which 2D

spatial navigation is primary, Bederson has increasingly employed an object-based

approach where users click hyperlinks to navigate between objects rather than manual

spatial navigation.

Dynamic Queries [AS94] and coordinating plot axes (as in DEVise [LRB97]) are

also attribute based. Although these could be handled in Snap by enumerating matched

objects, this is not very efficient. Dynamic Queries requires specialized data structures

and algorithms in each visualization, so is inherently in conflict with the goal of using

independent visualizations anyway. It would be interesting to explore how the

attribute-based approach could be combined with the Snap model.

3.5 Extensions to the Model

Snap’s conceptual model is intentionally designed with simplicity to simultaneously

capture the need for a model of visualization coordination as well as meet the practical

architectural goals (as discussed in Chapter 5). However, this model may be extended

in several ways:

3.5.1 Multiple-Tuple Actions

Some actions in some visualizations may be able to act on multiple tuples. Instead

of acting on a single primary-key value, these actions could act on a set of values. For

example, multiple selection [Wil96] is often used for brushing-and-linking

coordinations to enable users to highlight several tuples simultaneously. Clearly, this

does not apply to all actions. Some actions, such as scroll, are semantically single-

tuple. Others are limited by the visualization’s software architecture, e.g. Treemaps can

 48

only select one node. However, visualizations could mark their actions as single- or

multiple-tuple capable. Then, Snap could allow actions of the same cardinality to be

tightly coupled in coordinations.

In fact, in continued work on Snap at the Census Bureau, multiple selection has

been added. For example, in Figure 3.13, selecting the high income and highly

educated U.S. states in the scatter plot (using Spotfire’s lasso selection capability)

reveals that those states are all in the northeast, the DC to Boston corridor.

Figure 3.13: Brushing and linking with multiple-tuple selection

3.5.2 Unions and Intersections

The drill-down coordination enables users to select a parent tuple in one

visualization to load and display its children tuples in another (1-M). This could be

extended for union and intersection by using multiple selection and allowing

simultaneous use of different foreign-key load actions as follows:

 49

• Union: Selecting multiple parent tuples in the same parent visualization would

display the union of their children. For example, selecting two folders would

display the files of both in the tabular visualization.

• Intersection: Selecting multiple parent tuples from different parent

visualizations would display the intersection of their children. For example,

selecting a folder and a user would display only the files in that folder owned by

that user. This would allow the construction of simultaneous-menu applications

[HKV00]. This requires allowing load actions on different foreign keys

simultaneously.

This approach would enable users to select from several different overviews to filter

items in a main visualization, enabling functionality very similar to Dynamic Queries.

3.5.3 Other Foreign-Key Actions

It would also be possible to enable multiple-tuple actions to act as foreign-key

actions. For example, selecting a parent tuple in one visualization might coordinate

across a 1-M join to select and highlight all its children tuples in another visualization.

This could be used for brushing-and-linking across many-to-many relationships.

However, this will likely introduce confusion for users. Primary-key actions and

foreign-key actions are semantically different, but users would not be able to distinguish

primary-key selections from foreign-key selections in the visualization. For example,

what should happen if users select a child tuple in the latter visualization? Also, should

the foreign-key selection of children tuples initiate new primary-key selection actions

for each? This modification would introduce the potential for conflicts in coordination.

 50

3.6 Summary

The Snap model provides a solid, well-founded basis for visualization coordination.

It is based on the relational data model. Visualizations display relations, and

coordinations correspond to one-to-one and one-to-many join relationships. A graph

model describes the coordination of multiple visualizations. The Snap model is the

underlying basis for the Snap user interface and software architecture.

 51

Chapter 4:
User Interface for Coordination
Construction and Operation

4.1 Background

The Snap-Together Visualization user interface enables data users to quickly and

dynamically construct coordinated-visualization interfaces without programming.

Then, they can efficiently explore their data using these powerful coordinated-

visualization interfaces that are custom tailored to their data, tasks, and preferences.

Snap is used in two modes. Users first construct interfaces, then operate them to

explore. However, there is not a distinct mode switch between modes. Users can

interchange activities on the fly as needed.

Chapter 1 provided an overview scenario of the Snap user interface. This chapter

proceeds to describe the interface in detail.

4.1.1 Users

As indicated by the study in Chapter 6, the users that construct interfaces with Snap

are likely to be the more data-savvy users or data owners, such as analysts or data

providers. These highly motivated users are familiar with the general content and

structure of the data (e.g. the data schema), and have accumulated some experience in

constructing with Snap.

Some of these users construct interfaces for their own use. For example, an analyst

at the Census Bureau might quickly snap together an interface while examining trends

 52

in newly collected survey results. The analyst could also present findings to co-workers

using the same interface.

Users can also construct interfaces for use by others. For example, a data-product

specialist at the Census Bureau could construct an interface to accompany the

distribution or publication of census-2000 population statistics. Then, casual readers

such as policy makers or business owners could easily examine the data, using the pre-

constructed interface, and make decisions.

As an in-between case, an analyst might construct interfaces for use by other

analysts in the organization, similar to the way they share Excel macros [NM91].

Several enhancements to the Snap interface are described later in this chapter that

are aimed at enabling even casual end users to construct coordinated-visualization

interfaces themselves. This is accomplished by using direct manipulation techniques to

reduce users’ learning time, performance time, and error rates.

4.1.2 Requirements

The Snap user interface is soundly based on the underlying Snap model for

visualization coordination. For construction, the model completely specifies what

choices users make to specify a new coordinated-visualization interface (CVI).

Recalling the definition:

CVI = (V, C), where

V = {v1, … , vn}, vi = (visualizationType, relation)

C = {c1, … , cm}, ci = ((vj, actionj), (vk, actionk)), where vj,vk ∈ V.

Hence, to construct a coordinated-visualization interface, users must:

1. create visualizations by matching relations to visualization types, and

 53

2. coordinate visualizations by selecting pairs of visualizations and specifying

actions to tightly couple in each.

In addition, the possible choices of actions to tightly couple are specified by the data

schema, the one-to-one and one-to-many relationships. These definitions provide users

with syntactic guidance only. Semantic guidance comes from the semantics of the data

schema and the desired tasks to support.

4.2 Coordination Construction

Snap’s user interface employs a two-step approach to construction. Users first open

and display relations in visualizations. Then, they coordinate the visualizations by

tightly coupling actions between the visualizations.

Implementation note: Snap supports database formats that have ODBC drivers,

such as Microsoft Access or Oracle (see Implementation section of Chapter 5). To edit

the database and schema, the database’s native software is used. For example, Access

databases are manipulated using Access’s GUI. For databases that do not have the

necessary software, Snap provides a simple SQL text editor to add and edit queries.

The description in the remainder of this chapter assumes an Access database.

4.2.1 Relations into Visualizations

Starting Snap displays the Snap Menu window. To begin construction and

exploring a database, users first open the database using Snap. Any database (of the

supported formats) can be opened with Snap. That is, Snap is not hard wired to a

specific database or schema. Snap determines the schema from the database.

The Snap Menu (Figure 4.1) displays a list of the tables and queries in the database

(left). It also displays a menu of the available visualization types (right). To display a

 54

relation in a visualization, users simply drag the desired table or query name onto a

visualization-type button (or select a relation and click a visualization button). The

visualization tool opens and the relation is loaded and displayed. Users can open as

many as needed.

Figure 4.1: Snap Menu

4.2.1.1 Visualization Types

The current implementation has the following visualization types:

• Scrolling list: Displays each tuple like a textual report with each attribute on a

new line (Figure 4.2). Particularly useful for long text (e.g. memo fields).

Multiple tuples are separated by a horizontal rule. Actions: select a tuple, and

scroll to a tuple.

• Paging list: Like scrolling list, but displays only one tuple at a time. A paging

bar enables navigation to the other tuples. Actions: select a tuple, and page to a

tuple.

 55

• Table: Standard rows (tuples) and columns (attributes) display. Actions: select

a tuple, scroll a tuple to the top.

• Spotfire: Commercial dynamic-query software, including scatter plot, bar

chart, pie chart. Actions: select a tuple by click or mouse-over.

• Outliner: Standard nested-indented hierarchy widget. Actions: select a tuple.

• Treemap: Research software that displays hierarchies by area-coded slice-and-

dice containment. Actions: select a tuple (node) by click or mouse-over, zoom

onto a tuple.

• Hyperbolic Tree: Commercial Java applet (Inxight Software) that displays

hierarchies as a radial fish-eye. Actions: select and center focus on a tuple.

• Internet Explorer (IE): Accepts a relation with a single tuple and a single

attribute which contains the URL or pathname of the web page, folder, or file

(file viewer) to display. Actions: none, output only.

• Image Thumbnails: Displays a set of thumbnail images in a flexible manner,

using pathnames attribute. Actions: select a tuple (image), zoom a tuple.

• Image Maps: Uses IE to display an image map. Actions: select a tuple (region

of the image map).

• ArcView Maps: Commercial GIS software that displays choropleth (colored by

attribute) geographic maps. Actions: select a tuple (geographic entity), zoom on

a tuple.

 56

Tuple1:
Attribute1: _____________
Attribute2: _____________
…
AttributeN: ____________

Tuple2:
Attribute1: _____________
…

Figure 4.2: Scrolling list visualization

The hierarchical visualizations require a pathname attribute that specifies the

hierarchical structure of the tuples. There are two variations:

• Complete hierarchies have a tuple for each node in the hierarchy. For example,

in the file-folder example, each folder in the hierarchy is represented by a tuple.

• Leaf-only hierarchies have tuples for only the leaf nodes. For example, a

relation of U.S. states might organize the states into six major regions. Hence,

the region level of the hierarchy does not have tuples, only the states at the leaf

level do.

4.2.2 Coordinating Visualizations

When opening a visualization tool, Snap automatically adds a “snap” button

 to its window in the upper right corner. This is intended to be similar to the

way the window manager adds minimize, maximize and close buttons to each window.

To establish a coordination between two visualizations (“snap them together”),

users first identify the pair by dragging the snap button from one of the visualizations to

the snap button of the other visualization (as shown in the Chapter 1 scenario). This

drag-and-drop approach for selecting pairs of visualizations is similar to that of

 57

LinkWinds [JBO94] and Apple Dylan [DP95], although the latter distinguishes between

output and input buttons.

Then, the Snap Specification dialog is displayed (Figure 4.3). The Snap

Specification has two group boxes. The top box displays information about the first

visualization (at the source of the drag-and-drop), and the bottom box displays

information about the second visualization (the destination of the drop). The order of

the visualizations is not important, since coordinations are bi-directional.

Figure 4.3: Snap Specification dialog

The information displayed about each visualization includes: the title of the

visualization, the name of the table or query in the visualization, the set of actions

available for tight-coupling, and the primary-key and foreign-key attribute names.

There are three action slots for each visualization. The actions shown in these slots are

 58

completely determined by the visualization. If the visualization offers fewer than three

actions, then the remaining slots are grayed out.

Users can then select which of the actions to tightly couple. For example, choosing

the select actions of both visualizations will create a brushing-and-linking style

coordination.

The current implementation does not have access to information about the relational

joins in the data schema. Hence, users must enforce the primary-key action and

foreign-key action combination rules themselves. The display of the key attribute

names helps users remember the join relationships. The system does attempt to guess

the join by matching the key names, but is fallible of course.

To use the load action, users first create a parameterized selection query that

extracts tuples by matching the appropriate primary-key or foreign-key attribute to the

given key value. Then, they open this query in a visualization. The presence of the

parameterized query enables the visualization’s load action. They can then tightly

couple the load action in a coordination. The parameterized query enforces the rule that

only one foreign-key or primary-key attribute can be used in a visualization’s load

action at a time.

For example, in the file-folders example in Chapter 1, the select action of the scatter

plot is coordinated to the load action of the tabular visualization. The tabular

visualization displays the results of a query like:

SELECT * FROM files WHERE files.parentFolderID = <parameter>

 59

4.2.2.1 Modifying Coordinations

Users can edit coordinations by clicking on a visualization’s snap button. The Snap

Specification dialog displays coordinations to that visualization. If there are multiple

coordinations, the combo box at the top of the dialog is used to flip through them.

Users can then change the choice of tightly coupled actions or delete a coordination

entirely.

4.2.2.2 Coordination Suggestion

When the system can determine the join relationship between the visualizations, it

automatically suggests the following common coordinations in the Snap Specification

dialog:

• Primary key to primary key: suggests select to select, for brushing-and-linking.

• Primary key to foreign key: suggests select to load, for drill-down.

• Foreign key to foreign key: suggests load to load.

Users can immediately accept the suggestion, or override with their own choices.

4.3 Coordination Operation

Once the coordination has been established, users can then operate the now

coordinated visualizations. These coordinated-visualization interfaces significantly

improve users’ performance in many tasks as shown in the user studies in Chapter 6.

Users are better able to explore, understand, and discover new information.

In addition to guiding the construction of coordinations, Snap’s model also specifies

how the coordinations operate once constructed. The commutative and transitive

properties of the graph model lead to bi-directionality and propagation in the user

interface.

 60

4.3.1 Bi-Directionality

When users perform either of the actions tightly coupled in a coordination, the other

is also executed. For example, Figure 4.4 shows an interface constructed with Snap for

browsing information on the U.S. states using an overview-and-detail coordination.

Selecting a state in the overview immediately scrolls the detail to the information about

that state. Likewise, scrolling through the detail highlights the name of the currently

viewed state in the overview.

Figure 4.4: Overview and detail

 61

Bi-directionality is an important design property of coordination that is often

violated in the design of user interfaces for other systems. Interface designers often

neglect to include the latter direction of the overview-and-detail coordination. For

example, many web pages with frames enable users to select an item in an overview

frame to navigate the main frame (see web frames example in Chapter 1). However,

when manually navigating the main frame, the highlight does not update in the

overview. As a result, the interface can depict an inconsistent state, leading to user

disorientation and confusion.

An advantage of Snap is that user interfaces constructed with it automatically inherit

the robust nature of the Snap model, preventing such poor designs.

4.3.2 Propagation

When users invoke an action in a visualization, the effects will propagate across

chained coordinations. All visualizations coordinated to that visualization either

directly or indirectly through other visualizations will have their tightly-coupled actions

executed. In the file-folders example, selecting a folder in the Hyperbolic Tree will

highlight that folder in the scatter plot and load its files into the tabular visualization.

4.4 Additional Features

The Snap model and architecture also enable a variety of other user interface

capabilities that magnify the utility of its coordinated-visualization interfaces. The

following features have already been built:

4.4.1 Save Groups

A coordinated-visualization interface can be saved for later reuse, sharing, or

distribution with data. The Save Group button on the Snap Menu displays the Save

 62

Group dialog (Figure 4.5). Users select the visualizations they want to save by clicking

the snap buttons on the visualizations, then assign the group a name, such as “Windows

Explorer for System Administrators”.

Then, selecting that name from the combo-box on the Snap Menu automatically

reconstructs the coordinated group of visualizations.

Figure 4.5: Save Group dialog, and Snap Menu opening a group

4.4.2 Extract

Users explore information so that they can extract the needed information required

to accomplish some other task, such as writing a report on Maryland’s economic status.

Snap allows users to drag-and-drop tuples from visualizations into other applications

such as Microsoft Word or an email message window. For example, users could select

Montgomery County on a scatterplot of census data, and drag it to a Word document.

When tuples are dropped, Snap displays a small popup list of the attribute names for the

tuples (Figure 4.6). Users select the desired attributes, such as county name, per capita

 63

income, and population. Then Snap inserts the tuples values for those attributes into the

document text.

Hence, snap can enable drag-and-drop for visualizations that do not support that

capability because Snap tracks the selection actions and provides a drag initiation point

in the visualization’s snap button. Clearly, this capability would be significantly more

powerful if multiple selection were enabled. Users could select the 10 most populated

counties and extract their data to a document with a single drag-and-drop.

Figure 4.6: Attribute selector for drag-and-drop data extraction

4.4.3 Search Box

Snap provides a search box that can be coordinated to other visualizations. The

search box enables users to directly type in a primary-key value, and initiate a

coordination using that value. For example, if the folders primary-key values were their

pathnames, users could coordinate the search box’s search action to the select action of

the folders scatter plot. Then typing a folders pathname into the search box will

highlight the folder in the plot.

 64

In a more advanced scenario, the search box can be used with computed joins. For

example, a query could return all the files that have a provided key word in their name

(or perhaps in their contents). The key word can be thought of as a foreign key, joined

to a relation of keywords. The query can be opened in a list visualization and

coordinated to the search box. The search box provides the key word, and the list

displays the resulting file ‘hits’. This approach is used in the WestLaw scenario for

searching case-law documents (Figure 4.7). Typing a search term reveals case-law

documents containing that term in a textual list of hits as well as a scatter plot. Notice

that the query also returns a relevance value for use on the Y-axis of the plot. This

interface could be coordinated to a case-viewer interface for examining hits.

Figure 4.7: Searching case-law documents

4.4.4 History

History keeping is becoming an important new research topic for user interfaces.

History allows users to quickly review previous states when exploring. Since Snap

receives action events from visualizations, Snap can easily keep a history list of all the

 65

actions users invoke. Snap’s History window displays that list in chronological order

(Figure 4.8). Each event indicates the visualization, action, and tuple. Selecting an

event from the list re-invokes that action on that tuple in that visualization.

Figure 4.8: Snap’s History window

4.4.5 Shopping Basket

While exploring, users can easily gather a set of interesting tuples in Snap’s

Shopping Basket window, similar to the History window. Selecting a tuple in the

basket also selects it in the visualization it originally came from. This allows users to

collect a temporary set of items of interest while exploring. These can be used as

bookmarks to return to those items in the visualizations.

4.5 Enhancements

The results of the user studies (Chapter 6) demonstrate that users, with some

training, are able to construct coordinated-visualization interfaces with Snap. The

studies also helped to identify improvements to the user interface that could

dramatically reduce the need for training, improve user performance, and decrease error

 66

rates. These enhancements focus on reducing the need for query editing, and providing

diagrammatic user interfaces that closely match the Snap model.

4.5.1 Automatic Query Generation

The study on construction revealed that creating new queries using Access was the

primary difficulty for users. Reducing the need to create queries in this manner would

be a major benefit. While the capability for creating queries enables generality,

shortcuts are possible for the common simple situations. An applicable HCI design

principle is: make common tasks easy, possibly at the expense of making rare tasks

more difficult. There are two types of common simple queries that users must often

create: selection, projection.

4.5.1.1 Selection

When using the load action in a coordination, Snap can automatically create the

appropriate selection query based on the join relationship. In the file-folders example,

when coordinated folders to files with select to load, Snap could automatically infer the

SQL query for files based on the data schema:

SELECT * FROM files WHERE files.parentFolderID = <parameter>

4.5.1.2 Projection

Projection queries are often needed to extract certain attributes from a relation for

display in a visualization. For example, an overview list of states’ names is generated

using a projection query to extract the Name field from the states relation:

SELECT id, name FROM states

In a modified Snap Menu, the tables and queries list is changed to an outliner

control (Figure 4.9). Users can expand a table or query to reveal its attributes. Then,

 67

users can directly select attributes of a relation and drag them to visualizations, in

addition to the capability to select an entire relation. Snap can automatically generate

the projection query for the chosen attributes, and automatically include the primary-

key attribute.

Figure 4.9: Including attributes in the Snap Menu list of tables

4.5.2 Data Compass

The two-phase approach to coordination construction (opening visualizations, then

specifying coordinations) can be combined into one. Once the user has initially opened

a relation in a visualization, the Data Compass user interface displays which relations

the user could coordinate to the current visualization based on the data schema. Users

can select one of the relations, a visualization to display it in, and the actions to tightly

couple. The new visualization is immediately displayed and coordinated to the current

one as specified. For example, after displaying a visualization of the folders relation,

 68

the Data Compass indicates that users could coordinate a visualization of files, another

visualization of folders, or other relations such as HardDrives or Users who own the

folders (Figure 4.10).

This approach helps guide users in the construction process, and hence may

significantly reduce training time. It may also match users’ mental model more closely:

“Where can I navigate to from here?”. This may be valuable when exploring databases

with many relations and very complex schemas (as in SeeData [AEP96]).

The Data Compass user interface divides relations that can be chosen into three

groups based on the join relationship with the current relation:

• Parents: One to many towards the current relation.

• Siblings: One to one.

• Children: One to many towards the other relation.

Up Level Users,
(parents) HardDrives

 1
 M

Same Level 1 1 Folders
(siblings)

 1
Down Level M
(children) Files

Folders

Figure 4.10: Data Compass

 69

4.5.3 Overview Diagram

When users coordinate three or more visualizations, an overview diagram (Figure

4.11) is needed to help users understand and manage the coordination graph (that is, a

visualization of visualization-coordination, or a meta-visualization). This helps to make

the underlying Snap model more salient to users. The overview displays visualizations

as nodes and coordinations as edges. Using direct manipulation, users can construct,

edit, and delete coordinations. A debug mode can allow users to slowly step through a

coordination propagation cycle. This diagram might also integrate the data schema to

show the correspondence between relational concepts and Snap user-interface concepts,

and to localize all interaction related to construction to a single window.

In LinkWinds [JBO94], users can temporarily view the linkages between its

windows. When clicking the LinkWinds icon, it draws lines between the windows on

the desktop.

Hyperbolic
Tree
(Folders)

Select

Load (PK)

Load (FK)

Scatter plot
(Folders)

Tabular Viz
(Files)

File Viewer
(Files)

Select

Select

Select

Figure 4.11: Overview diagram

 70

4.5.4 Window Management

The studies also indicated that window management is a major burden for users.

Two forms of automatic window management [KS97] can help:

• Tiling: When displaying many visualizations, users need to tile many windows

on the screen. With tiling, users can easily “dock” visualizations to each other,

so that resizing and rearranging is quick.

• Packaging: Users can package several visualizations into a single window

using frames. This allows the group to be manipulated as a whole, for opening,

coordinating, moving, resizing, and deleting. For example, in the WestLaw

scenario, the case viewer is a saved group composed of three visualizations.

This group is a semantic unit that can be instantiated and coordinated to other

visualizations to load and display cases. The three visualizations could be

packaged to reflect this grouping. This allows saved groups to be treated as a

single visualization, turning composites into new primitives.

4.6 Summary

The Snap user interface enables users to explore information by quickly

constructing coordinated-visualization interfaces without programming. Users first

open relations into visualizations, then coordinate them by selecting actions to tightly

couple. Snap also enables a host of additional features that further amplify its value.

Several enhancements to the Snap user interface have also been described based on

results from user studies in Chapter 6.

 71

Chapter 5:
Software Architecture for Visualization
Coordination

The Snap-Together Visualization software architecture enables the dynamic

construction of coordinated visualizations, providing flexibility in data, visualizations,

and coordinations. A major goal of Snap is to coordinate independent visualization

tools. The Snap architecture implements the Snap model and exploits existing

functionality of visualizations to accomplish this goal. Because of Snap’s clean design,

researchers and developers can easily snap-enable their independent visualization tools,

allowing users to employ the tools in coordinated-visualization interfaces of their own.

5.1 Architecture Overview

The Snap system acts as a centralized intermediary between visualizations (Figure

5.1). It also mediates between the database and the visualizations. The Snap

architecture insulates visualizations from each other, the database, and the rest of the

system. This protects visualizations from having to be programmed to handle the

complexities of visualization coordination. In fact, visualizations are completely

unaware of the concept of coordination. Their only connection to Snap is through a

very simple API (application programming interface).

This is different from standard approaches in fully integrated systems. For example,

in the Visage [RLS96] architecture, when users highlight an item in one visualization it

broadcasts a message to all other visualizations. Then each visualization must itself

 72

determine the relationship of that item to its set of items and calculate what action to

take.

Snap-Together Visualization

Database

Visualization1

ActionsData

Visualizationn

ActionsData

Visualization Managers

…

Figure 5.1: Snap’s software architecture

5.2 Visualizations

At start up, Snap’s Main Menu displays a menu of available visualization tools.

Each visualization must initially register with Snap in order to be included in this menu.

When initially opening a database, Snap extracts schema information from the

database, including the list of relations (tables and queries) to display in the Main Menu.

When users open a relation into a visualization, the following operations execute:

1. Within Snap, a Visualization-Manager object is instantiated to handle

communication with the visualization.

2. The visualization tool is instantiated.

 73

3. If the relation is a query, the query is executed in the database.

4. The data in the relation is loaded into the visualization, using the visualization’s

Load Procedure (described in the API section below).

5.2.1 Goals for Snap-Enabling Visualizations

Snap is designed to be open, so that developers can easily make their independent

visualization tools snap-able, including existing visualizations and newly developed

visualizations. The effort required to snap-enable an off-the-shelf visualization is

minimized to the extent that even a developer who is not the original implementer of the

tool should be able to make the necessary modifications.

To accomplish this, snap minimizes the impact on visualization implementation.

Snap uses a simple API (application programming interface) to communicate with

visualizations. This is analogous to API’s in modern window-management systems for

utilities such as cut-and-paste or drag-and-drop. The Snap API is proposed as a similar

standard, that can be easily added to a visualization tool by its developers, enabling

users to immediately snap it with many other visualizations. This greatly increases the

value and usefulness of the tool for little cost. Effort is low and payoff is high.

Snap limits programming effort by exploiting existing functionality of visualizations

to coordinate them together. The functionality of typical visualization tools includes the

ability to load a data set (e.g. from a file) and display it as visual items in a window.

These tools often provide some form of interactivity, allowing users to select items or

navigate between items.

 74

To maximize the compatibility of the architecture with typical visualization tools,

and minimize the effort to integrate these tools, the architecture places upper limits on

visualization requirements. Primarily, these aspects of visualizations are NOT changed:

• Remain independent software entities. Run as stand-alone applications as

normal, and are not compiled into Snap.

• Themselves determine what actions they support (e.g. select, scroll).

• Use their existing data input format.

• Do not need to deal with the larger data context of the database. Handle the data

loaded into them by Snap as normal.

• No new user interface requirements.

• No requirements for shared data structures, etc.

• Do not need to be made aware of the database, other visualizations, or

coordination.

Furthermore, Additions to the visualizations are limited to:

• Simple communication protocol.

• Identify tuples by primary-key only (e.g. no complex attribute processing).

5.2.2 Snap Button

When instantiating a visualization, the Visualization Manager automatically adds

the snap button to the visualization’s user interface. This is similar to the

concept of window managers adding window decoration and controls to each window

when opened. This provides an interaction point for the user for each visualization, and

is used for coordination construction, loading different data, saving groups, etc.

 75

Ideally the snap button would appear next to the minimize, maximize, and close

buttons on the window’s title bar. However, due to minor implementation constraints,

the snap button is placed just below these buttons within the window’s client area. This

is accomplished by simply inserting a small child window containing only the snap

button into the visualization window. Hence, the snap button moves and overlaps with

the visualization’s window. The Visualization Manager tracks resize events of the

visualization’s window, and adjusts the position of the snap button within the

visualization accordingly.

This approach saves developers from needing to add Snap user interface

functionality to their visualizations.

5.2.3 Visualization API

To be snap-enabled, each visualization must implement the following API. Snap

communicates with the visualization by connecting to these entry points on the

visualization. It is worth noting that this API is not necessarily specific to visualization

coordination. It is quite general, and could be useful for many other applications such

as history keeping, end-user programming, multi-user collaboration, etc.

There are only three elements in the API:

5.2.3.1 Load Procedure

Procedure doLoad(filename | dataObjRef | SQLstring, PKattribute)

Snap can invoke this routine to load data into the visualization. Visualizations can

choose one of three methods to receive the data:

 76

• File: Snap writes the tuples to a temporary file in the format expected by the

visualization, using a translator routine. This is the approach for most typical

research visualization tools, such as Treemaps and Hyperbolic Trees.

• Memory: Snap provides the data using standard ODBC data objects (Microsoft

DAO or ADO). This is common for visualizations that were developed

specifically as components (e.g. ActiveX), such as the tabular visualization

which uses a standard grid control, or developed specifically for Snap, such the

textual list visualization.

• SQL: Snap provides the ODBC connect string and the SQL query string that

the visualization then uses to extract the data from the database itself. This is

useful for visualization tools that have built in database support, such as

Spotfire.

Visualizations may also need to know which attribute to use as the primary key.

Visualizations should attempt to preserve any visual settings across loads.

5.2.3.2 Action Procedure

Procedure doAction(action, PKvalue)

Snap can invoke this procedure to programmatically execute the specified action on

the tuple identified by the specified primary-key value. For example, a coordination

could invoke the select action on a Spotfire scatter plot to highlight the specified dot.

Each visualization publishes the list of actions it supports to Snap at registration time.

5.2.3.3 Action Event

Event onAction(action, PKvalue)

 77

The visualization triggers this event to Snap whenever users perform one of the

visualization’s supported actions on a tuple. The visualization reports the action name

and the primary-key value of the tuple. For example, when users click on a dot in a

Spotfire scatter plot, Spotfire reports the select action.

5.2.4 Visualization Registration

At registration time, each visualization specifies its:

• Name: for identifying it to the user, as on the Snap Main Menu.

• Description: more detailed text.

• Launch string: specifies how Snap instantiates the visualization.

• List of actions. each action is a string, for identification to the user in the Snap

Specification dialog and for use in the API.

• Load method: File, Memory, or SQL (see API Load Procedure).

Ideally, developers could register their visualizations with Snap using a registration

user interface to a registration database.

5.2.5 Programming Effort

Adding Snap’s API to a visualization requires only a small amount of code. First,

there may be some initial overhead in enabling the visualization for communication. In

the current implementation, this means making the visualization into a COM object.

Fortunately, the popular development tools can do this automatically.

Second, the three API elements must be implemented. Since a visualization already

has functionality to load data, the Load Procedure can simply call that existing code.

Hence, this is quite simple to add, requiring essentially two lines of code (the procedure

declaration and the call). Likewise, the Action Procedure can use the existing user

 78

interface code to perform actions. However, additional code may be needed to search

internal data structures to locate the item identified by the given primary-key value.

Corresponding code that searches for items based on user events (mouse clicks) can be

copied and modified. This usually requires 2-10 lines of code. The Action Event

simply requires adding the event trigger in the appropriate callback routine of the

visualization’s user-interface code, requiring one line of code per supported action.

Also, the data structures may need to be expanded slightly to support the storage of the

primary-key values.

Finally, a translator procedure may be needed that converts the input data from the

memory format (relational data objects) to the input format of the visualization tool.

However, this could be claimed as a gain, not a cost, because only one such translator

ever has to be written for each visualization tool. From the users’ point of view, this is

a big advantage because traditionally users must write their own translators for each

visualization they use. With Snap they need at most one: to convert their data into a

relational database. And visualization developers need to supply only one: to convert

the relational format to their visualization’s format.

To snap-enable the Treemap visualization tool, which was originally developed by

others, required approximately 2 hours of work to add approximately 20 lines of code to

its software (using Borland Delphi’s Object Pascal).

In some cases, access to the source code is not necessary. Some well-designed

component-based visualizations, such as Spotfire (commercial software), already

support a full suite of methods and events. A simple wrapper program can be written in

Visual Basic (VB) that translates the Snap API protocol to calls to the visualization

 79

component. Snap provides a template wrapper. Snap-enabling Spotfire required

approximately 10 lines of VB code.

Java and web-based applications can be enabled using Internet Explorer (IE). For

example, the Hyperbolic-Tree Java applet was enabled using a small VB wrapper to

control IE, and a simple HTML page to control the Hyperbolic Tree applet using

Javascript.

SAS JMP is an example of a visualization package that could not be enabled well.

Its programming API has many methods, but no events (callbacks). Hence, the Load

and Action Procedures could be implemented in the VB wrapper, but the Action Event

could not. A request has been given to its developers to include action events.

5.3 Coordination

When users coordinate visualizations, snap maintains a graph data structure

representing the visualizations and coordinations. Then, when users invoke an action in

a visualization during coordination operation, the following execution takes place (see

Figure 5.2):

1. The visualization notifies Snap of the action and the primary-key value of the

tuple acted on, via its Action Event.

2. Snap begins a traversal of the coordination graph starting at that visualization

and action.

3. For each visualization encountered in the traversal, Snap invokes the tightly

coupled action on the visualization:

 80

a. If the action is not a load action, then the action is programmatically invoked

directly on the visualization, passing the primary-key value as parameter, via

its Action Procedure.

b. If the action is load, then the Visualization Manager executes the selection

query using the primary-key value as the query parameter, and loads the

results into the visualization via its Load Procedure.

For example, in the file-folders example, when users select the folder with primary-

key value “MyDocs” in the scatter plot, then Snap calls on the Hyperbolic Tree to select

“MyDocs”. Then for the tabular visualization, Snap executes and loads the results of

the query:

SELECT * FROM files WHERE files.parentFolderID = “MyDocs”

Query

Visualization1

Query

Visualization2

DataAction,
PKvalue

Load

Database

Action,
PKvalueData

Snap-Together Visualization

1

2

3

Figure 5.2: Coordination Operation

 81

The coordination graph data structure and coordination propagation traversal

algorithm provide the generality that makes the Snap architecture flexible for

visualizations and coordinations (e.g. third level of flexibility). Users can construct any

possible combination of visualizations and coordinations as needed.

5.3.1 Data Structures

The coordination graph data structure is based on the Snap model, and is composed

of a list of the currently open visualizations and a list of the currently constructed

coordinations. As users construct or delete visualizations and coordinations, Snap adds

and removes from these lists.

Coordination Graph data structure:
 List of Visualization structures
 List of Coordination structures

Visualization data structure:
 Visualization object reference
 Relation name
 List of boolean marks for each action (used during propagation)

Coordination data structure:
 Pointer to Visualization1 structure
 Action1
 Pointer to Visualization2 structure
 Action2

5.3.2 Algorithm

The coordination propagation traversal algorithm executes the tight couplings and

implements the transitivity property of the Snap model. During coordination operation,

when users invoke an action on a visualization, a depth first traversal of the

coordination graph is initiated:

 82

Procedure beginPropagation(visualization, action, PKvalue)
 Clear all action marks in all visualizations
 Call traverse(visualization, action, PKvalue)

Procedure execute(visualization, action, PKvalue)
 If not marked (visualization, action) then
 If action = load then
 Execute visualization query(PKvalue)
 Call visualization.doLoad(query results)
 else
 Call visualization.doAction(action, PKvalue)
 Call traverse(visualization, action, PKvalue)

Procedure traverse(visualization, action, PKvalue)
 Mark visualization, action
 For each coordination in graph.coordinationList do
 If visualization = visualization1 and action = action1 then
 Call execute(visualization2, action2, PKvalue)
 Else if visualization = visualization2 and action = action2 then
 Call execute(visualization1, action1, PKvalue)

5.4 Issues and Tradeoffs

5.4.1 Independent vs. Integrated Visualizations

The Snap architecture is designed to use independent visualization tools. An

alternate approach would be to fully integrate visualizations by custom implementing

them within the context of the coordination system (as in Visage [RLS96], DEVise

[LRB97], Spotfire, etc.). Each approach has corresponding advantages (+) and

disadvantages (-):

 83

Independent Visualizations Integrated Visualizations
+ Open system, others can easily add

visualizations
- Closed system, only system developer

can add visualizations
+ Reuses existing visualizations from the

field
- Popular visualizations must be re-

implemented within the system
+ Visualization development unaffected - Visualizations must use designated

structures
+ Visualizations can be used outside the

system
- Visualizations only work within the

system
+ Clean component-based design,

visualizations insulated via API
- Potential inter-dependency

complexities
+ Consistent coordination model - Potential coordination inconsistencies
- Use only existing functionality of

visualizations
+ Can add new functionality to

visualizations
- Visualization user interface

inconsistencies
+ All visualizations implemented with

same look and feel
- Potential performance hit + Potential performance boost from

shared data structures, etc.
- Static coordination model + Can add advanced custom functionality

for coordinating dynamic data, edits,
etc.

The Snap architecture employs a component-based approach, in which

visualizations are implemented as individual units rather than integral to monolithic

systems. This programming approach is becoming increasingly popular in commercial

visualization and other domains due to benefits of modularity, reuse, etc. For example,

AlphaBlox [IDC99] enables rapid deployment of web-based analytical applications by

dropping visualization and data components into web pages.

While Snap works well to coordinate full-fledged feature-rich visualization

applications such Spotfire, the Snap approach steers developers towards implementing

smaller simple visualization components as in the Hyperbolic Trees applet. This

eliminates some of the extra visual clutter of toolbars and menus for each visualization.

 84

5.4.2 Effort vs. Payoff

In the design of the Snap API, part of the goal is to maximize benefits while

minimizing effort required by visualization developers. A larger and more complex

API would enable more functionality (e.g. coordinating dynamic data, edits, etc.), but

would require more effort for visualization developers and the disadvantages of the

integrated approach begin to creep in. Hence, when increasing effort, the law of

diminishing returns results in reduced payoff. I believe that Snap finds the sweet spot

where effort is low and payoff return is maximized.

5.4.3 Snap vs. Programming

When constructing coordinated-visualization interfaces, one can either use Snap

(visualization or coordination flexible) or program the interface by hard coding the

desired coordinations between visualizations (data flexible or non-flexible). Each

approach has corresponding advantages (+) and disadvantages (-):

Snap Programming
+ Non-programmers

(for enabled visualizations)
- Programmers only

+ Quick and easy - Time consuming and difficult
+ Can make throw-away solutions for

temporary or short-term needs
- Short-term needs go unmet

+ Interfaces are changeable on the fly - Static, inflexible, slow turn-around
+ Can prototype many options - Prototypes typically non-functional
+ Robust coordination model - Prone to mistakes, inconsistencies
+ Guided by Snap model - Design from scratch
+ Once enabled, visualizations are

reusable in many different interfaces
- Visualizations hard-coded each time

- Potentially disparate visualizations + Package in custom user interface
- Bounded functionality + Custom functionality as needed

 85

How much effort is saved by using Snap instead of programming a hard-coded

coordinated-visualization interface by hand? It is difficult to measure the number of

lines of code saved because it is not clear what code in the hard-coded interface to

count. What would the programmers be starting with? Snap provides a total solution

from data to coordinated-visualization interface, that covers a lot of functionality.

Yet, even more than the number of lines of code is the significant amount of

consideration and care programmers must employ. Implementing a coordinated-

visualization interface is very tricky. An interface with two coordinated visualizations

may be straightforward, but complexity quickly increases with the number of

visualizations and coordinations.

An examination of the Snap’s functionality reveals the amount of complexity that

programmers must consider when implementing a coordinated-visualization interface.

First, programmers must consider the design of the coordination. The Snap model

provides significant guidance to how the coordinations work. Programmers must

implement affordances for actions. Visualizations must be able to notify of user actions

and invoke and respond to actions programmatically. A method is needed to uniquely

identify data items. Actions must be propagated to other visualizations. Functions are

needed to relate data items between visualizations. Programmers must keep track of

which visualization initiated the action, ensure that each action in each visualization

propagates to all others as needed, ensure that programmatically invoking actions

doesn’t generate new actions, and ensure that each action gets invoked on a

visualization only once. Finally, data handling is needed for processing, subsetting, and

loading data into visualizations, possibly as a result of coordinations.

 86

Naturally, this process is prone to errors, bugs, incomplete implementations, and

inconsistencies in design. For example, many web designers fail to include bi-

directionality in overview-and-detail coordinations between frames. Selecting an item

in the overview highlights the item and displays corresponding details in the detail

frame. However, navigating the detail frame using the scroll bar or next/previous

buttons on the page fails to update the highlight in the overview. This results in

inconsistent state and confusion.

Whereas, Snap opens design capability to non-programmers. This enables the

construction of coordinated-visualization interfaces in many situations where a

requirement for programming would immediately prevent its use. Snap does not

require programming savvy, development tools, knowledge of the visualizations’

implementation, etc.

5.4.4 Scalability

The Snap architectural approach of using independent visualizations has a potential

disadvantage in system performance. In direct-manipulation environments, user actions

should result in visual feedback within 100 milliseconds [Shn98]. Hence, in

coordinated-visualization interfaces, propagated actions should occur within 100

milliseconds from the user action invocation. In an integrated approach, all

visualizations can be implemented to use shared data structures and optimized for

coordination operation. However, with independent visualizations, each visualization

instantiates its own potentially-large data structures and may not have been

implemented from the perspective of coordination. This could mean that

programmatically invoking actions on visualizations is slow.

 87

In general, displaying several visualizations simultaneously is not a problem for

memory and swapping. Modern systems are designed to handle many open

applications and windows. Screen space is the limiting factor here. However, if

invoking actions on visualizations is slow, then the number of open visualizations may

serve to multiply that delay. Furthermore, a coordination propagation is only as fast as

the slowest visualization involved in the propagation. By default, in the COM

implementation, API calls are blocking. This means that while an action invocation is

executing, Snap is stalled. There are two potential bottlenecks in the API: the Action

Procedure and the Load Procedure.

The Action Procedure may have to perform a search on the visualization’s internal

data structures to locate a tuple by its primary-key value. For naively implemented

visualizations, this requires an O(n) search. For example, Spotfire’s VB wrapper

executes an O(n) search using Spotfire’s programmer API. Performance tests on a 300

Mhz Pentium computer measures this search at about 1 second per 1000 tuples. This

can be vastly improved using hash tables or other data structures to map primary-key

values to Spotfire data-structure indices or pointers.

A potential solution to this problem would be for Snap to manage hash tables for

each visualization. After loading a relation, a visualization could perform a single

traversal of its internal data structure, reporting each primary-key value and internal

pointer pair to Snap. Snap could store these in a hash table. Then, when invoking an

action on a visualization, Snap could provide a direct pointer to the tuple.

The Load Procedure is used to initially load data into a visualization. Slow

performance here is acceptable. However, it is also often used to repeatedly load

 88

different data into a visualization during a drill-down coordination. Fast performance in

this case is needed to enable users to quickly explore aggregates. Again, testing

Spotfire (a known slow loading program) on the same computer with the web log data

(about 25,000 tuples, 10 attributes), Spotfire loads approximately 1000 tuples per

second with a minimum of about 1 second. Hence, displaying the whole relation is a

significant delay. However, in a drill-down coordination, only a fraction of the data is

loaded. Users can explore a million tuple relation using aggregation and drill-down, by

displaying 1000 aggregates in one Spotfire plot and 1000 tuples of a selected aggregate

in another plot. That results in a 1 second delay for each aggregate.

When dealing with large relations or slow visualizations, there are some potential

solutions to help users avoid long unwanted delays:

• Warning: The textual list visualization displays a warning message if it

attempts to load a relation of more than 200 tuples. Users have the option to

cancel the load entirely.

• Loose coupling: Instead of loading immediately, a slow visualization could

simply indicate that it has become out of date with respect to coordination.

Then, users could manually trigger an update when desired.

Each of these could be implemented within Snap as a general solution. Users could

control these options through the Snap user interface.

5.5 Implementation Details

Snap is currently implemented in the Windows platform. It is based on the

Microsoft COM/ActiveX model for communication in the API. Visualizations are

COM objects, exposing the visualization API as methods and events. Snap creates and

 89

controls visualizations using OLE automation. It uses the Windows API and the

visualization’s window handle to insert the snap button into each visualization and to

track window resizing for saving and opening visualization groups.

Snap accesses ODBC databases using the Microsoft DAO object model. This

allows Snap to extract schema information, execute queries, and extract data. Snap can

reliably extract table and query information, but can retrieve join relationship

information for only some database formats. Snap has been used with Microsoft Access

and Oracle databases. For Access databases, Snap instantiates the Access GUI to allow

users to edit and manipulate the database. For Oracle and others, Snap provides a

simple SQL query text editor.

Snap is implemented in Visual Basic, an ideal environment for working with COM.

There are four primary code modules (Figure 5.3):

• Snap Menu: implements the Snap Menu, and visualization registration.

• Database Manager: handles database access, querying, schema extraction.

• Coordination Manager: implements the Snap Specification dialog,

coordination data structures and propagation algorithm.

• Visualization Manager: handles communication with visualizations, and

implements the snap button. Instantiated for each visualization.

Additional modules handle the user interfaces and functionality for saving groups,

history keeping, shopping basket, drag-and-drop data extraction, and search box. There

is also the implementation of a few of the visualizations (text list, table, outliner) and

wrappers for others. The compactly designed Snap code is on the order of 2000 lines of

 90

VB code, not including user interface properties and layout definitions. The

implemented visualizations and wrappers are an additional 2000 lines.

Database

Database
Manager

Coordination
ManagerSnap

Menu

Visualization
Managers

Visualizations

Figure 5.3: Software modules

5.6 Extensions

The Snap software architecture lays out a foundation on which several interesting

extensions could be built.

5.6.1 Packaging and Deploying

One of the primary uses of Snap is to allow designers or data disseminators to

construct coordinated-visualization interfaces for deployment to other users. Snap has

the capability to save coordinated-visualization groups. But to truly enable deployment,

a mechanism is needed to package saved groups as standalone executables.

 91

Essentially, Snap could become the ‘Visual Basic’ of information visualization.

Designers could quickly construct an interface making use of third party visualization

components, and essentially compile it into an executable containing only the necessary

visualizations and functionality for coordination operation.

Licensing issues with commercial visualizations could be handled in the same way

that VB handles commercial controls. Designers purchase the visualizations, and can

distribute them in their constructed interfaces. But users of the constructed interfaces,

cannot switch to ‘construction mode’ (VB ‘design mode’) to make new interfaces with

the commercial visualizations.

5.6.2 Collaboration

The Snap architecture provides capabilities that could support collaborative

visualization. There are two forms of collaboration with respect to time: synchronous

and asynchronous.

5.6.2.1 Synchronous Collaboration

Synchronous collaboration refers to multiple users working together at the same

time. Often, the users are at different computers and locations.

When coordinating independent visualization tools with Snap, there is absolutely no

reason why the visualizations have to be running on the same computer. Snap could be

used to synchronize information exploration on multiple users’ screens (similar to Suite

[DC95]). One user could explore and point out interesting phenomena in the data while

other users at remote locations watched. In fact, different users could use different

visualizations according to their preferences (similar to RENDEZVOUS [Hil92]).

 92

Snap provides a very efficient communication protocol that could easily be

transported over the internet. In fact, COM already has support for remote procedure

calls and distributed computing called DCOM. The Snap API could simply be invoked

on visualizations running on remote machines.

5.6.2.2 Asynchronous Collaboration

Asynchronous collaboration refers to multiple users working together but at

different times. Snap’s capability for saving coordinated-visualization interfaces and

history keeping could be used to support this type of collaboration too. The history

keeping could be used to easily save the current state of exploration during coordination

operation. This could then be published so that other users could see what has been

discovered, similar to LiveDocs [MHG00]. In addition, the full history could be used to

create animations of exploration for other users, as in SimPLE [PRR99]. For example,

a professor could navigate through a scientific database to show several important

phenomena, and then send out the history to students to replay for homework. Again,

Snap provides a very efficient mechanism to save and distribute such histories along

with the specification for the saved interface.

5.6.3 Dynamic Data Consistency

Some visualizations may allow users to edit the data, such as adding, deleting, or

renaming a file in the file-folders example. Snap could be extended to coordinate data

consistency between visualizations in the face of changing data. An additional

procedure could be added to the API to notify of changes to individual tuples. Ideally,

visualizations could reload only changed tuples without reloading the entire relation.

 93

This capability might also enable the display of dynamic databases, as in stock

market applications or air traffic control. If the data update rate is low (e.g. changing a

few tuples per second), Snap could update visualizations with changing data values.

However, further research is needed to explore specialized architectures that can scale

up to high data update rates.

5.6.4 Integrating into Operating System

While the Snap architecture is currently implemented as a standalone application, it

could be integrated into data systems or operating systems. For example, Snap could be

integrated into the ODBC architecture in the Windows operating system. The Snap

Visualization API could be adopted into the current ODBC API standard. Snap’s GUI

could become part of Windows, and the snap buttons part of the window decorations.

Then, ODBC compliant applications could be used as snap-able visualizations.

This approach has several major benefits. ODBC benefits by adding this powerful

new feature. Snap benefits by joining an existing strong standard and by potential

improved performance due to integration. Visualizations benefit by simplifying

development due to a single unified standard. This approach might also enable more

applications, such as drawing from multiple distributed databases.

5.7 Summary

The Snap software architecture enables flexibility in data, visualizations, and

coordinations. Its visualization API enables developers to easily snap-enable their

independent visualizations. The data structure and algorithms are based on the sound

Snap model. The architecture clearly demonstrates major advantages (and some

 94

disadvantages) over programming and the fully integrated approach. It provides a solid

foundation for potent new future directions.

 95

Chapter 6:
Evaluation of Coordination Construction
and Operation

Studying the use of Snap is important for two reasons:

• To evaluate the usability and benefit of the Snap system itself and discover

potential user interface improvements.

• To gain a deeper level of understanding about users’ ability to understand,

construct, and operate coordinated-visualization strategies in general.

Two separate studies were undertaken to evaluate two distinct aspects of

coordination [NS00b]:

1. Construction: First, can users successfully construct their own coordinated-

visualization interfaces?

2. Operation: Second, can users then operate the constructed coordinated-

visualization interfaces to explore information beneficially?

6.1 Evaluation of Coordination Construction

The goal of the first study is to determine if users can learn to construct coordinated-

visualization interfaces and how difficult it is for users to construct them, in terms of

success rate and time to completion, and to identify cognitive trouble-spots in the

construction process. Hence, this study examines the flexibility that Snap provides.

Can users grasp the concept of coordinating two independent visualizations together to

form a unified browsing tool? What cognitive issues are involved, how much training

 96

is required, how do users’ backgrounds affect performance, and can relatively novice

users construct powerful exploration tools in a short time? This study also reveals

potential Snap user interface improvements.

The Snap-Together Visualization system is used to examine these issues. Currently,

Snap employs a 2-step approach to constructing coordinated-visualization interfaces.

First, users drop relations into visualizations. Second, users snap the visualizations

together to coordinate actions between them. For this study, Snap uses Microsoft

Access GUI to enable users to create and edit queries.

6.1.1 Procedure

Six subjects participated, one at a time. Four of the subjects were employees of the

U.S. Census Bureau, three of whom were data analysts or statisticians, and one a

programmer. The other two subjects were computer science graduate students on

campus.

First, background information was obtained from each subject concerning their

occupation and experience with: census data, computers, databases, Microsoft Access,

visualization tools, and programming.

Then, each subject was trained on Snap-Together Visualization. The training

program consisted of:

1. A quick demonstration of Snap by the administrator to give the subject an

overview and motivation.

2. Review of various background concepts including:

• Relational database concepts including: tables, records, fields, primary keys,

foreign keys.

 97

• Database query concepts including: projection, selection, sort, join.

• Snap model concepts.

3. Detailed instruction on the use of Snap and Microsoft Access. The subjects

walked through the construction of a few variations of coordinated-visualization

interfaces for browsing census data. This demonstrated how to construct

common types of coordinations.

Then, when confident to continue, each subject began the testing phase. Subjects

were given a database of census data for the U.S. states and counties, and Snap

(including a set of Visualization tools) and Microsoft Access. Testing consisted of three

exercises in which subjects were asked to construct a coordinated-visualization user

interface according to a provided specification:

Exercise 1: The first specification consisted of a printed screenshot of the desired

user interface (Figure 6.1). The interface is a pair of textual visualizations with

overview-and-detail coordination for browsing state data. This trial was designed to be

fairly easy, to be similar to those constructed in the training, and to build confidence.

Exercise 2: The second specification was also a screenshot (Figure 6.2), but more

difficult. It uses a textual list, Spotfire scatterplot, and tabular visualization to browse

census data for states and counties. It involved a one-to-many join relationship, so that

selecting a state would display data for that state’s counties.

Exercise 3: The final specification consisted of a textual description of the

browsing task that the constructed interface should support: “Please create a user

interface that will support users in efficiently performing the following task: To be able

to quickly discover which states have high population and high Per Capita Income, and

 98

examine their counties with the most employees.” This trial was designed to test if

subjects could think abstractly about coordination, think task-oriented, think in terms of

user-interface design, and to allow for potential creativity and variation.

Figure 6.1: User interface specification for exercise 1

 99

Figure 6.2: User interface specification for exercise 2

Finally, subjects were given the opportunity to freely explore the system, describe

problems with the Snap user interface, and offer suggestions for improvement.

The following variables were measured:

• Subjects’ background information.

• Learning time.

• Success (y/n or how close to success).

• Time to completion.

This study also observed:

 100

• Cognitive trouble spots (in training and test trials).

• Snap user interface problems.

6.1.2 Results

From the background survey, none of the subjects except the Census programmer

had experience with Microsoft Access or SQL, and little exposure to relational database

concepts. The Census analysts had significant experience with census data, but

generally used flat files or spreadsheets. Each had experience with only basic

visualization tools (e.g. Excel charts).

All the subjects completed the training phase in 30-45 minutes. They all were able

to complete all three exercises, with occasional help in wading through Access’s visual

query editor. They accomplished exercise 1 in 2-5 minutes, and exercise 2 in 8-12

minutes. They spent 10-15 minutes on exercise 3 until they were satisfied with their

solution.

In general, the subjects were quick to learn the concepts and usage, and were very

capable to construct their own coordinated-visualization interfaces. Several stated that

they had a sense of satisfaction and power in being able to both (a) so quickly snap

powerful exploration environments together, and (b) with just a single click effect

exploration across several visualizations and see the many parts operate as a whole.

They reported that it made exploration seem effortless, especially in comparison to the

standard tools they are used to. As to the subjects’ general reaction to Snap, they

clearly showed enthusiasm. There may have been social pressure to respond positively,

since the subjects knew that the administrator of the experiment was also the developer

of the Snap system.

 101

There was an interesting difference between the reaction of the data analysts and

programmers (census programmer and computer science students). The programmers

commented enthusiastically about the component based programming approach, and the

ability to rapidly construct new interfaces. Whereas, the data analysts commented about

being able to explore the data thoroughly and efficiently. They did not see it as

construction, but as exploration.

In fact, the data analysts performed better than the programmers. They learned the

database concepts quicker, completed the exercises quicker, and constructed creative

interesting new interfaces. Perhaps they were more motivated by the use of examples

involving Census data. Even during the training, they were already trying variations of

coordinations and exploring the data. Two pointed out various anomalies in the data.

After finishing the exercises, these subjects each voluntarily stayed for an additional

hour to discuss and try other examples. All four Census subjects expressed desire to use

Snap in their work. In fact, a collaborative effort has been undertaken.

An important result was the creativity and variation evident in the subjects’

solutions to exercise 3. Subjects were able to design user interfaces that made cognitive

sense to their own perspective on the data. They used a mixture of visualizations

including tables, scatter plots, and lists. For example, while the expected design was

two scatter plots with a drill-down coordination (one-to-many, select to load), one of the

data analyst subjects augmented this design with a pair of lists for the state and county

names. The subject stated that this would help to see which state and county was

currently selected in the scatter plots, and also allow for accessing states by name which

would be difficult with the scatter plot alone. Another subject who preferred to see

 102

numeric values placed the counties in a table sorted by number of employees. One had

even constructed an interface using the Treemap visualization, which is generally

considered a more advanced visualization difficult for novices. In addition to variation

in user interfaces, subjects made use of the transitive property of coordination to

coordinate visualizations in different pairings.

Overall, subjects did not have problems grasping the cognitive concept of

coordinating visualizations. They were able to generate designs by visual duplication

and by abstract task description. Results from exercise 3 demonstrated that these users

were able to design appropriate coordinated-visualization interfaces. These

encouraging results indicate that users can handle a level of design in which they piece

together pre-designed components to construct a larger design. Snap apparently finds a

middle ground between usage (the realm of end-users) and design (the realm of

experienced HCI practitioners) appropriate for these data-savvy users. This validates

the primary benefit of Snap, its flexibility.

The problems subjects did have were in manipulating the Snap and Access user

interfaces. Creating queries was by far the most difficult part of the construction

process for the subjects. Learning to use Access and its query editor is a challenge in

such a short time.

6.1.3 User Interface Issues

Understanding the basic Snap model was critical to construction. However, the

current Snap user interface and the form fill-in style of the Snap Specification dialog

does not reflect this model well. This study identified four major trouble spots in the

interface:

 103

1. The terminology of the snap-able actions “select” and “load” caused some

confusion. It was not clear enough that these represented user interface actions.

Apparently some subjects were confusing “select” with the database query sense

of selection.

2. For simplicity, Snap uses the Access query editor. However, this made

constructing a drill-down coordination (one-to-many, select to load) very

laborious, and subjects sometimes got lost in the 3 step process: writing the

parameterized query, opening the query in a visualization, and specifying the

coordination.

3. When constructing interfaces of three or more visualizations, subjects

sometimes forgot what coordinations they had constructed between

visualizations. They had to recheck each pair.

4. When subjects weren’t quite sure what coordinations they should construct, they

would often “just try stuff” and see how it behaves. A snap debugging mode is

needed to help them see how the tight-couplings propagate between the

visualizations.

Redesigning the Snap user interface around an overview diagram would solve these

problems. A node and link diagram could represent the visualizations as nodes and

coordinations as links between them. This overview could become the primary user

interface for constructing, editing, examining, and debugging coordinations. Such a

visual representation with direct-manipulation interaction would closely reflect the

conceptual Snap model. Hence, this would likely reduce users’ training time as well.

 104

In addition, while the ability to create queries with Access enables more complex

scenarios, it is a burden for common simple coordinations. Basing the Snap

Specification dialog on the database schema diagram would more closely match users’

mental model of the data. This would simplify constructing drill-down coordinations

since Snap could generate the parameterized selection queries automatically. For

projection queries, expanding the Snap Menu window to include attribute names would

allow users to directly select desired attributes to load into visualizations. Together,

these modifications would obviate the need to use Access to manually create queries in

common cases. This would further reduce training time to almost nothing.

Also, window management is a serious problem. Subjects spent considerable

amounts of time rearranging visualization windows on the screen into nicely tiled

layouts. Others have proposed solutions to this general problem (see [KS97] for a

review).

6.2 Evaluation of Coordination Operation

The goal of the second study is to measure the added value of coordinated

visualizations over independent or single visualizations in terms of user task times and

subjective satisfaction for browsing large information spaces. The visual feedback

across visualizations could be distracting or disorienting for users. But if there is a

benefit, what is its magnitude?

While there are many possibilities, this study examines the overview-and-detail

coordination. This coordination has two enhancements over the traditional single-

visualization detail-only display:

 105

1. Overview: A display enhancement that depicts the full breadth of the data in a

compact form, like a table of contents.

2. Coordination: An interaction enhancement that allows users to select an item

in the overview to scroll the detail to that item. Likewise, directly scrolling the

detail highlights the current item in the overview.

Chimera’s [CS94] result seems to indicate that overview-and-detail should perform

better than detail-only. But, if so, which enhancement is the important factor that

causes improved user performance? Is it (a) the information displayed in the overview,

or (b) the coordination between the overview and detail?

Hence, the purpose of this study is not to compare a coordinated user interface with

the best alternative (see section 2.4 for such studies). Instead, the purpose is to further

understand coordination and its users. Specifically, why and how much does the

overview-and-detail coordination improve over detail-only, in the context of a single

popular type of navigation (one-dimensional scrolling) for browsing tasks? What is the

value or detriment of visualizations that are not coordinated? What are users’ reactions

to these interfaces?

6.2.1 Independent Variables

User interface: A simple textual user interface, constructed with Snap, uses the

overview-and-detail coordination for browsing population statistics of 45 of the U.S.

states from the Census Bureau’s 1990 census. Three treatments: (see Figure 6.1)

1. Detail-Only: A single scrolling textual report of the states, in alphabetical

order, and their data.

 106

2. No-Coordination: The same visualization as Detail-Only, with the addition of

a textual overview tiled on the left. The overview displays an alphabetical list of

the names of the states. The visualizations are not coordinated.

3. Coordination: The same visualizations as No-Coordination, with the addition

of coordination between them. In Snap, this tightly couples the overview’s

select action to detail’s scroll action.

At first, the inclusion of the No-Coordination user-interface treatment might seem

spurious. However, it is included for two important reasons: First, No-Coordination

will reveal which aspect of the coordinated-visualization interface approach is most

critical: the multiple visualizations or the coordination. Second, designers actually do

build such systems that have uncoordinated visualizations. Microsoft Access is an

example. Uncoordination also occurs when using multiple tools by different

developers. For example, HCIL members regularly use Spotfire, Excel, Access, and

Netscape to examine the HCIL web logs [HS99] and technical-report database.

However, they are not coordinated. This is precisely the problem Snap was designed to

solve. Hence, it is important to gather data on No-Coordination approaches as well.

Task: A variety of browsing tasks, using a question and answer approach. Nine

treatments:

1. Coverage-yes: “Does the information include statistics about the state of

Ohio?” where Ohio is included in the data.

2. Coverage-no: Same as Coverage-Yes, but where the state is not included in the

data.

3. Overview patterns: “How many states in the list begin with the letter M?”

 107

4. Visual lookup: “What is the population of the 6th state from the bottom of the

list?”

5. Nominal lookup: “What is the population of Georgia?”

6. Compare-2: “Which of the following states has higher Median Family Income:

California or Washington?”

7. Compare-5: “Which of the following 5 states has higher Median Household

Income: Florida, Texas, Louisiana, Alaska, or Oregon?”

8. Search for target value: “Which state has Average Commute Time of 31?”

9. Scan all: “Which state has the highest College Degree %?”

The tasks are listed here in order from easy to difficult based on the experiment

results. The actual order they were administered was: 5, 1, 6, 8, 3, 7, 2, 9, 4.

6.2.2 Dependent Variables

User performance time: Time to correctly complete each task, not including

reading the task question.

User subjective satisfaction: Subjects rated their satisfaction with each interface

on a scale of 1 to 9 on four categories (with scales): comprehensibility (confusing to

clear), ease of use (difficult to easy), speed of use (slow to fast), overall satisfaction

(terrible to wonderful).

6.2.3 Procedure

The 18 subjects were students and staff from campus, and were paid $10 to

participate. A within-subjects design was used. Each subject used all three user

interfaces to perform all nine tasks. To avoid repetition, three different but similar sets

of task questions were used. To counterbalance for potential order effects, all 6 possible

 108

permutations of interface order were each assigned 3 times. The three task sets were

not permuted.

For each user interface, subjects were first trained in its use and performed several

practice tasks before beginning the timed trials. After finishing all three interface

treatments, subjects then completed the subjective satisfaction questionnaire.

6.2.4 Results

Analysis of the data reveals a strong and interesting result. Figure 6.3 shows the

mean user-performance times for each task and interface. A 3x9 within-subjects

ANOVA reveals that the user interface effect, task effect, and interaction effect are all

statistically significant at p<.001. Nine one-way ANOVAs reveal that user interface is

significant for all 9 tasks at p<.001 (see Appendix C section C.2.4 for details of the

means, standard deviations, F values and significance levels).

Finally, individual t-tests between each pair of user interfaces within each task

determine performance advantages. For tasks 1, 2, and 3, the Coordination and No-

Coordination interfaces are both significantly faster than the Detail-Only interface at

p<.001, but not proven different from each other. Whereas, in tasks 5 through 9,

Coordination is significantly faster than both No-Coordination and Detail-Only at

p<.001, and the latter are not proven different from each other. However, while task 4

(Visual lookup) could be included in the second group of tasks, it may classify as an in-

between case. For this task, Coordination is significantly faster than the other two user

interfaces at p<.005, but No-Coordination is marginally significant over Detail-Only at

the p<.07 level.

 109

0

30

60

90

120

150

180

1
Coverage-

yes

2
Coverage-

no

 3
Overview
patterns

 4
Visual
lookup

 5
Nominal
lookup

6
Compare-2

7
Compare-5

 8
Search

 9
Scan

Task

Ti
m

e
(s

ec
on

ds
)

Coordination
No-Coordination
Detail-Only

Figure 6.3: Average user performance time for tasks.
The coordinated interface has significantly faster performance in most cases.

First, Coordination results in major improvement in user performance time over

Detail-Only for all tasks. On average, Coordination achieves an 80% speedup over

Detail-Only for easy tasks and 50% for difficult tasks. The least improvement, about

33%, is in task 6 (compare-2). This task had the lowest interaction-time to thinking-

time ratio.

The No-Coordination interface results in a nearly binary pattern, and is likely the

source of the interaction effect between task and interface (see Figure 6.4). For tasks 1-

3, No-Coordination performs faster than Detail-Only, and its averages are similar to

Coordination. In these tasks, subjects only needed the information in the overview to

accomplish the task. Whereas, in tasks 5-9 the Coordination interface is faster than No-

 110

Coordination, and the averages for No-Coordination are similar to Detail-Only. In these

tasks, subjects needed to access the details of the data. Observing subjects’ behavior as

they performed these tasks revealed that when using No-Coordination they tended to

ignore the overview. The lack of significant difference between No-Coordination and

Detail-Only in these cases does not imply that they are necessarily the same. It is

conjectured that they are the same due to the observation of the users. In any case, what

is important is that Coordination is significantly faster than No-Coordination in these

cases. Hence, in tasks where access to details is important, undoubtedly a majority in

common applications, coordination is absolutely critical.

 Tasks
 1-3 4-9

Slower Group Detail-Only Detail-Only
No-Coordination

Faster Group No-Coordination
Coordination

Coordination

Figure 6.4: User interfaces grouped by user performance in tasks.
The faster groups are significantly faster than the slower groups at p<0.005.

Task 4 (Visual lookup) might classify as an in-between case. With No-

Coordination, many subjects determined the name of the target state from the overview,

then scrolled to it in the detail view. With Detail-Only, they scrolled to the bottom, then

scrolled back up while counting, and sometimes lost track. Apparently, this is a case

where just having the contextual information of the overview was somewhat

advantageous. Even so, Coordination was still a major improvement over both.

In fact, an important result is that Coordination performance times for lookup tasks

(4 and 5) are in the same extremely fast range as overview tasks 1-3. Whereas, No-

 111

Coordination times drop to Detail-Only level performance. When looking up details,

perhaps the most common task, Coordination especially excels.

In general, overview-and-detail coordination greatly improved performance over

detail-only scrolling. Clearly, a major advantage of the coordination is the ability to

directly select a target in the overview to immediately locate its details. Whereas, the

scrolling interfaces requires careful searching while dragging the scroll bar thumb.

Observing the subjects as they performed the tasks revealed that they were more likely

to explore when using Coordination. For example, in the Compare-2 and Compare-5

tasks, subjects were more willing to recheck their answers with Coordination. With

Detail-Only and No-Coordination subjects spent extra effort to mentally alphabetized

the 5 states to compare so as to minimize their scrolling effort. Several subjects

reported verbally and on the questionnaire that scrolling was difficult. This is surprising

since scrolling is a fundamental component of current GUI systems and perhaps the

most common navigational method. The Coordination interface could be considered an

improved scroll bar that facilitates exploration.

6.2.5 Subjective Satisfaction

With the satisfaction data (Figure 6.5), a 3x4 within-subjects ANOVA indicates that

user interface, subjective satisfaction category, and interaction effect are all significant

at p<.001. One-way ANOVAs for each category indicate that Comprehensibility, Ease

of use, Speed of use, and Overall Satisfaction are all significant at p<.001 level (see

Appendix C section C.2.4 for details of the means, standard deviations, F values and

significance levels).

 112

1

2

3

4

5

6

7

8

9

Comprehen-
sibility

Ease of Use Speed of Use Overall

Category

R
at

in
g

 (
be

tte
r »

)

Coordination
No-Coordination
Detail-Only

Figure 6.5: Average user subjective satisfaction.
The coordinated interface rates significantly higher in all four categories.

Analyzing each pair of interface treatments within each category reveals that all

pairs are significant at p<.001 except: Detail-Only and No-Coordination in Ease of Use

are significant at p<.05 and the same pair in Comprehensibility are not proven different.

Coordination is a clear winner, gaining nearly twice the rankings of Detail-Only and

No-Coordination in Ease, Speed, and Overall. On average, subjects ranked

No-Coordination 1-2 points higher than Detail-Only, except in Comprehensibility they

ranked about the same. While completing the survey, several subjects stated that

No-Coordination was only useful for the overview tasks.

6.2.6 Answers

Returning to the research questions: Which factor is more critical, the overview

information or the coordination? The answer is nearly binary. If only the overview

information is needed, then naturally coordination is not necessary. But for the

 113

important cases where access to details is needed, then coordination is everything.

What is the magnitude of the benefit? For the three most difficult tasks, the coordinated

version cut tasks time in half. This study also reveals the importance of good overview

design to enable common questions to be answered directly from the overview.

When first presented with the No-Coordination interface, many subjects

immediately attempted to click in the overview expecting the detail view to change,

even when they had not yet seen the Coordination interface. Hence, not only were users

not distracted by this coordination, but they wanted and expected it! They were visibly

distraught when the interface did not behave as they hoped. Even more, they were

clearly elated when presented with the Coordination interface, as the subjective

satisfaction data indicates. Subjects expressed appreciation for interactive coordination

that sped their tasks.

6.3 Combined Analysis

Combining the results from these two studies may indicate the breakpoint at which

time savings during coordination operation surpass coordination construction time. In

exercise 1 of the first study, subjects constructed the same user interface as was used in

the second study for browsing tasks. The time cost of constructing the coordinated

interface was about 2-5 minutes, while it saved about 0.6-1.5 minutes over the standard

Detail-Only interface for the more difficult tasks. Hence, after just a few tasks, users

are already reaping savings when constructing their own coordinated interface. Of

course, it is difficult to factor in learning time and effects of sharing saved interfaces.

Nevertheless, this simple analysis reveals that customized information visualization is

within the grasp of data users.

 114

6.4 Summary

Overall, the overview-and-detail coordination offered a 30-80% speedup over

detail-only scrolling for all nine user tasks. While the uncoordinated overview was

sufficient for overview only tasks, coordination was critical when accessing details.

Users understood and appreciated this coordination.

Data-savvy users successfully and enthusiastically designed and constructed

coordinated interfaces of their own. Users showed creativity and variation in their

designs. These users are clearly ready for and strongly desire significantly more

advanced tools than standard detail-only, uncoordinated, or hard-wired systems. While

these cognitive issues were examined within the Snap platform, I believe that these

results will apply to similar coordinations and flexibility in other systems.

For practitioners, these studies indicate that Snap can be used in its present form, or

that the Snap coordination concepts can be implemented into other systems, to greatly

enhance the user experience.

For researchers, several open questions require further study. Other types of

coordination, such as brushing and linking, and drill down need to be empirically

evaluated. In this study, the use of the No-Coordination user-interface treatment was

very successful in identifying the interaction effect between task and coordination.

Future studies should exploit this same approach. Also, a browsing task taxonomy is

needed for the task independent variable. This study used a variety of exploration tasks,

but there may be others to consider. Finally, additional evaluation will be needed to

examine the effects of Snap user-interface improvements identified in the study on

construction.

 115

Chapter 7:
Conclusion

Snap-Together Visualization is a conceptual model, user interface, software

architecture, and implemented system that allows data users to rapidly construct

customized coordinated-visualization interfaces without programming. Users can

dynamically mix and match a variety of visualizations on the fly, and specify common

coordinations such as brushing and linking, overview and detail, and drill down.

Visualization developers can easily snap-enable their visualizations using a simple API,

allowing users to coordinate them with many other visualizations.

Empirical studies of Snap revealed benefits, cognitive issues, and usability

concerns. Data-savvy users successfully, enthusiastically, and rapidly designed

powerful coordinated-visualization interfaces of their own. An overview-and-detail

coordination reliably improved user performance by 30-80% over detail-only and

uncoordinated interfaces for most tasks.

7.1 Contributions

This research on Snap-Together Visualization contributes six major innovations:

• Conceptual model: a formal model of visualization coordination based on the

relational data model and graph model that provides a sound underlying theory

and a language for specifying coordinations.

• User interface: a user interface for constructing coordinated-visualization

interfaces without programming.

 116

• Software architecture: an architecture for coordination operation that easily

integrates independent visualizations using a simple API, enabling flexibility in

data, visualizations, and coordinations.

• Empirical evaluation: an evaluation of users’ ability to construct and operate

their own coordinated-visualization interfaces.

• Implementation: an implemented system that realizes the model, user

interface, and architecture.

• Flexibility framework: a conceptual framework that helps to lay out the space

of coordinated-visualization systems based on their level of flexibility in data,

visualizations, and coordinations.

Significant evidence validates Snap as both:

• Useful: a plethora of examples of Snap usage demonstrate its usefulness and

breadth of applicability (Appendix A). At HCIL, snap has been used in several

research projects to explore possibilities, and is currently in use at the Census

Bureau to expand data visualization capabilities. For example, Fredrikson

[FNP99] used Snap to explore approaches for aggregation strategies by

temporal, geographical and categorical attributes. Snap has already had

significant implementation impact at several organizations including the Census

Bureau, Spotfire, WestLaw, and HCIL.

• Usable: user studies indicate that Snap is quite usable with training, and user

interface improvements have been outlined that will increase its usability and

substantially reduce training requirements.

 117

7.2 Uses

7.2.1 Users

Snap can be used for several different purposes. Data users can explore their data

by constructing custom visualization user interfaces. User interface designers can

quickly prototype many different variations of interfaces, and produce interfaces for

data dissemination. Researchers can collaborate by combining their visualizations.

Snap overcomes a serious problem in information visualization research: the

isolation of visualizations. Researchers have created a variety of good visualizations,

which unfortunately are not coordinated. This makes it difficult for researchers to apply

and build on each others work. Snap multiplies the power of visualizations by enabling

them in more powerful coordinated-visualization interfaces.

7.2.2 Systems

The Snap model, user interface, and architecture could be employed in a variety of

systems. The current Snap implementation focuses on easily enabling the integration of

independent visualization tools from the field. To further this goal, Snap and its API

could be integrated into a data standard such as ODBC to provide universal support and

a closer coupling to data services.

Snap could also be implemented within integrated visualization systems such as

Datadesk, Spotfire, Visage, DEVise, Access, and Excel. These systems provide users

with a toolbox of cleanly designed visualization components that users could coordinate

for exploring data within the system.

Snap could also be used in rapid-application-development (RAD) systems such as

Visual Basic. These tools already enable pseudo-programmers to easily manage data

 118

schemas and load data into simple visualization components, all using the RAD GUI

(e.g. without actually programming). Snap capability would be an ideal next step to

enable the users to also coordinate the visualizations with programming.

7.3 Benefits

Snap has many benefits. For visualization researchers and developers, Snap:

• Reuses visualizations. Each visualization needs to be developed only once.

• Simplifies visualization development. Developers can focus efforts on their

primary visualization, and use Snap to incorporate supporting visualizations.

• Eliminates the need to program coordinations.

• Steers researchers to more rigorous identification of the purpose and strengths of

each visualization. In what situations should a certain visualization be used?

• Provides a platform for studying coordination and its users.

• Provides an API that is useful for other applications too, such as history keeping

and collaboration.

For users and interface designers, Snap:

• Provides instant user interfaces for databases, without programming.

• Offers flexibility in data, visualizations, and coordinations, to accommodate

varying data, tasks, and users.

• Enables rapid prototyping.

• Offers advantages of coordinated-visualization interfaces, including improved

user performance.

• Enables access to many visualizations, and saved groups shared by others.

• Standardizes data format.

 119

• Provides history keeping, data extraction by drag-and-drop, shopping baskets,

etc.

7.4 Limitations and Future Work

The limitations and potential future extensions to Snap have been discussed in each

of the major chapters. The Snap model focuses on common types of coordinations

discovered through experience. These are coordinations for selecting, navigating, and

loading data based on discrete data items. Example coordinations include brushing and

linking, overview and detail, drill down, synchronized scrolling, and details on demand.

Currently, the Snap model is not well suited for attribute-based spatial coordinations of

continuous regions. Snap does not yet address other types of coordination such as

consistency of dynamic data across visualizations, data mining, or collaboration.

The Snap model could be extended with multiple selection for unions and

intersections in drill down coordinations, and could be augmented with attribute-based

tight couplings for spatial coordination and data consistency coordination for editing.

The Snap user interface could be improved with coordination overview diagrams and

the Data Compass to reduce user training and enhance usability. The Snap architecture

could be extended with additional coordination controls to increase scalability, the

ability to package distributable coordinated-visualization interfaces after construction,

and collaboration features. Further evaluation of Snap is needed to study brushing-and-

linking and drill-down coordinations, and measure benefits of potential Snap user-

interface improvements. In addition, since Snap places significant design capability in

the hands of users, guidelines are needed to help them design appropriate coordinated-

visualization interfaces for their data.

 120

In the bigger picture, Snap could provide a solution to a rising new problem on the

web. Larger databases are increasingly used on the web. With applications such as e-

commerce and warehousing, more of the web is becoming data driven. XML is on the

rise. Yet, user interfaces on the web are improving slowly. Designers struggle to use

frames to provide more advanced coordinated interfaces. Unfortunately, however, the

hypertext model is not an appropriate model for coordination. It is uni-directional and

embedded in the data. XML provides some relief, since it separates data from

presentation, but coordination is missing. Snap can provide the missing link (pun

intended). It provides a solid coordination model, and a method for rapidly constructing

coordinated interfaces. Visualizations could be simple html and Javascript pages, or

more advanced Java applets as Hyperbolic Trees. Web designers could quickly place

visualizations into frames and coordinate them. This would solve the primary

remaining problem with Snap: distribution to users.

7.5 Conclusions

I believe that Snap-Together Visualization may help information visualization

succeed more widely. Snap users can construct the coordinated-visualization interfaces

they need for their data and tasks, which would otherwise be difficult and time

consuming to obtain.

Yet, this research is only the beginning. Snap opens new possibilities for applied

information visualization. It is one step towards ‘crossing the chasm’ [Moo91] –

towards helping a wider range of users to explore data, make complex decisions, and

apply their creativity [Shn00].

 121

Appendix A:
Scenarios

Snap-Together Visualization has been used with a variety of data and visualizations

that demonstrate its breadth and usefulness. Example applications include: WestGroup

case law, Census Bureau statistics, GIS maps, Maryland State Highway Administration

incident data, personal photo libraries, stock market portfolios, web-site logs, mailing

address databases, technical-report databases, and hierarchical file structures. These

scenarios use a variety of data types, including textual, numeric, geographic,

hierarchical, and image. They also employ a variety of visualizations including

commercial and non-commercial, and Windows-based as well as web-based. Each

scenario includes the specification for the coordinated-visualization interface using the

notation of the Snap model from Chapter 3.

A.1 Web-Site Logs

In related work on visualizing web-site logs, Hochheiser [HS99] created scripts to

parse web-site log files into an Access database. These files contain data about hits to

the HCIL web site. Using Snap, a coordinated-visualization interface (Figure A.1) was

easily constructed for examining what other web pages refer many readers to pages on

the HCIL web site. The three visualizations at the top (outliner, Treemap, Internet

Explorer) form a site browser for the HCIL web site. The outliner and Treemap display

the hierarchical structure of the site. Selecting a page in either displays that page in IE.

 122

The Treemap shows that the HCIL home page, Pad++, and the Visible Human Explorer

are the most frequently visited pages.

The two visualizations at the bottom (scatter plot, and IE) display other pages that

refer readers to the selected page in the site browser. The plot shows referring pages

along the X-axis and the number of hits referred (during October 1998) on the Y-axis.

Selecting the most frequent referrer (110 hits) to the HCIL home page reveals Human

Factors International in IE. Exploring reveals other common referrers, including Ben

Shneiderman’s page, the Department page, and Yahoo’s HCI institutes page. Selecting

the Visible Human Explorer page in the outliner shows nearly 1000 hits from the

National Library of Medicine page. Selecting to open this page indeed reveals a

prominent link to the HCIL page. Naturally, HCIL lab members explored to discover

referrer patterns to their personal pages.

The Snap specification for this interface is:

Visualizations = { (outliner, pages), (Treemap, pages), (IEtop, pages),
(plot, pageReferrers), (IEbottom, pageReferrers) }

Coordinations = { ((outliner, select), (Treemap, select)),

((outliner, select), (IEtop, load-PK)),
((outliner, select), (plot, load-FKpage)),
((plot, select), (IEbottom, load-PK)) }

 123

Figure A.1: Web-site logs scenario

A.2 Census Data

Figure A.2 is an interface for exploring Census population data of U.S. states (left)

and counties (right). Users can explore from nominal, geographic and numeric

perspectives. Selecting Maryland reveals that it ranks very high in terms of income per

capita and percent college graduates. Maryland has two counties that have much higher

percentage of college graduates that the others. One of these, Montgomery County, has

the highest per capita income and is clearly located just north of DC.

This example demonstrates the use of ESRI MapObjects, a component of the

popular ArcView GIS software.

 124

Snap is in use at the Census Bureau to prototype user interfaces for CD-ROM

products. Census analysts have also found the capability to relate data between maps

and plots extremely helpful. Continued work on Snap at Census has already enabled

multiple selection for brushing and linking, and connection to intranet-based Oracle

database servers.

Figure A.2: Census data scenario

The Snap specification for this interface is:

Visualizations = { (mapstates, states), (plotstates, states), (liststates, states),
(mapcounties, counties), (plotcounties, counties),
(listcounties, counties) }

 125

Coordinations = { ((mapstates, select), (plotstates, select)),
((mapstates, select), (liststates, select)),
((mapcounties, select), (plotcounties, select)),
((mapcounties, select), (listcounties, select)),
((mapstates, select), (mapcounties, zoom)),
((mapstates, select), (plotcounties, load-FKstate)),
((plotcounties, load-FKstate), (listcounties, load-FKstate)) }

A.3 Photo Libraries

Snap was used in an HCIL research project on user interfaces for personal digital-

photo libraries [KTS00] to explore many possible designs. The lab has accumulated a

database of scanned photos of lab members and activities spanning 10 years. It includes

annotations such as members’ names, dates, locations, and other information.

In Figure A.3, a thumbnail visualization shows a collection of a few hundred photos.

The scatter plot displays a time-line overview of the photos, with date on the X-axis and

members’ names on the Y. Uses can see trends and patterns. For example, vertical

stripes of dots represent group events, pictures of many members on the same date. The

large stripe in the middle is many photos from the 1992 HCIL Open House. Selecting a

photo from winter ’89 displays the full-size photo from a ski trip, a list of names of

members in the photo, and details of photo attributes.

Other interface variations include locating photos by members’ names or locations,

selecting a person in a photo to find other pictures of that person, etc.

The Snap specification for this interface is:

Visualizations = { (thumbnails, photos), (plot, photos), (IE, photos),
(listpeople, appearances), (listdetails, photos) }

Coordinations = { ((thumbnails, select), (plot, select)),

((thumbnails, select), (IE, load-PK)),
((thumbnails, select), (listpeople, load-FKphoto)),
((thumbnails, select), (listdetails, load-PK)) }

 126

Figure A.3: Photo libraries scenario

A.4 WestLaw Case-Law Documents

Significant inspiration for the Snap concept resulted from an HCIL research project

for WestLaw on visualization of case-law documents. Snap was used to prototype

work-benches for legal analysts. A major task that the analysts perform is to search

large case-law document databases using keywords, and then examine resulting cases

for relevance to a current case.

This user interface in Figure A.4 is for browsing search results. The visualizations

at the top of the screen display the hits resulting from a search. The Snap search

 127

window is used to enter search terms (described in Chapter 4). The hits are displayed

both textually and graphically by date and search relevance. Selecting a case displays it

in the case viewer at the bottom of the screen.

The case viewer displays the text-intensive details of the case in a manner that

supports rapid navigation. A case is composed of a judge’s decision text, which is

partitioned into sections. Each section has a WestLaw headnote, containing a

categorization and annotation. WestLaw’s existing user interface simply listed out all

the information in a single web page with many intra-links between sections and

headnotes. Since users often refer to headnotes while browsing the decision text, yet

need to scan the decision as a contiguous text, a two-frame synchronized-scrolling

approach is more appropriate. The main list visualization on the right displays the text

of the case by sections. The center list displays WestLaw headnotes for each section,

and synchronizes scrolling with the main text. Since many cases are long, containing

10 to 50 headnotes, users can quickly jump to a section by selecting section numbers

from the overview list on the left.

This example demonstrates how Snap would be ideal for rapid web-based user

interface construction. In fact, based on this prototype, WestLaw did implement this

case-viewer design in their web site (www.westlaw.com).

The Snap specification for this interface is:

Visualizations = { (search, phrases), (listhits, cases), (plot, cases),
(listoverview, sections), (listheadnotes, sections),
(listtext, sections) }

Coordinations = { ((search, search), (listhits, load-FKsearch)),

((listhits, load-FKsearch), (plot, load-FKsearch)),
((listhits, select), (plot, select)),
((listhits, select), (listoverview, load-FKcase)),

 128

((listoverview, load-FKcase), (listheadnotes, load-FKcase)),
((listoverview, load-FKcase), (listtext, load-FKcase))
((listoverview, select), (listheadnotes, scroll)),
((listheadnotes, scroll), (listtext, scroll)), }

Figure A.4: Case-law scenario

Search Results

Case Details

Case
Overview

 129

A.5 Highway Incident Data

For an HCIL research project on visual aggregation strategies, Fredrikson [FNP99]

used Snap with Maryland State Highway Administration incident data. She identified

temporal, geographical and categorical attributes as ideal candidates for aggregation.

The drill-down coordination was used to allow users to select aggregates in one

visualization to display aggregate contents in another visualization. For example,

Figure A.5 displays aggregations of highway accidents by day of the week in a bar

chart. Selecting Monday, which had the most accidents, reveals the locations of

individual accidents on the road map of the Baltimore, MD area.

Figure A.5: Highway incident data scenario

 130

While the data set used in this project was not large (~1000 tuples), this technique

demonstrates how Snap can be used to explore very large-scale relations using drill

down. For example, 1,000,000 traffic incidents could be aggregated into 1,000

aggregates, each with 1,000 incidents. This could be displayed with two coordinated

visualizations, an overview of 1,000 points, and a detail view of 1,000. Furthermore,

this approach can be repeated by chaining several visualizations, adding an additional

visualization for each level to multiply by powers of 1,000.

The Snap specification for this interface is:

Visualizations = { (barchart, dayAggregates), (map, incidents) }

Coordinations = { ((barchart, select), (map, load-FKday)) }

A.6 Mailing Address Database

In Figure A.6, Snap is used to explore addresses in the HCIL mailing-list database.

The names are displayed in a simple table. The table is coordinated to IE, in which a

query is loaded that formulates a mailing address as a URL query string to Yahoo Maps.

Then, selecting a name in the mailing list displays a map of the location of that address.

This example demonstrates how web services such as Yahoo Maps can be used as snap-

able visualizations.

The Snap specification for this interface is:

Visualizations = { (table, addresses), (IE, addressQueryStrings) }

Coordinations = { ((table, select), (IE, load-PK)) }

 131

Figure A.6: Mailing address database scenario

A.7 Files and Folders

The file-folders scenario in Chapter 1 demonstrates how Java applets such as

Hyperbolic Trees can be snap-enabled using IE (Figure A.7). IE is also useful as a

general-purpose file viewer for images, HTML, PDF and Word documents, etc.

The Snap specification for this interface is:

Visualizations = { (plot, folders), (hyperbolic, folders), (table, files),
(IE, files) }

Coordinations = { ((plot, select), (hyperbolic, select)),

((plot, select), (table, load-FKfolder)),
((table, select), (IE, Load-PK)) }

 132

Figure A.7: Files and folders scenario

A.8 Stock Market Portfolios

In data analysis, it is often useful to view both the graphical visualization as well as

the detailed numeric spreadsheet. In Figure A.8, Snap is used to display a financial

stock portfolio. Brushing and linking relate the Treemap and spreadsheet.

The Snap specification for this interface is:

Visualizations = { (treemap, stocks), (table, stocks) }

Coordinations = { ((treemap, select), (table, select)) }

 133

Figure A.8: Stock market portfolio scenario

A.9 Visible Human Images

As described in Chapter 3, Snap could also be used in medical and scientific

domains to relate physical structures in images to other types of information. The

mockup in Figure A.9 demonstrates the concept. While this example has not been

implemented, it can be done with Snap. For example, html image maps in IE have been

used with Snap. An image map of the U.S. was used prior to the use of ArcView

 134

(Figure A.10). Another approach might be to use a volume visualization tool that

supports the selection of structural objects.

The Snap specification for this interface would be:

Visualizations = { (volumeviz, structures), (outliner, structures) }

Coordinations = { ((volumeviz, select), (outliner, select)) }

Figure A.9: Visible Human images scenario

Figure A.10: Image map in IE

 135

A.10 Summary

These scenarios also demonstrate the serious need that Snap fulfills. Without the

use of Snap, scenarios such as the web logs example simply could not be readily

accomplished. They would require significant custom programming, or the difficult

and tedious use of uncoordinated displays.

These examples demonstrate how Snap has already been highly applicable and

useful in many projects. It has been useful to both researchers and practitioners, and

has already had an impact at several organizations including HCIL, the Census Bureau,

Spotfire and WestLaw.

 136

Appendix B:
Review of Coordinated-Visualization
Systems

Coordinated visualization systems have become an important and diverse topic.

Many such systems have been built. Most of these systems are data flexible (defined in

Chapter 2). That is, typically they can be used to visualize different data sets, but are

usually fixed in terms of the visualizations and coordinations in their user interface.

This Appendix reviews many of these systems from the field. As in the rest of this

dissertation, the focus is on coordinations for information exploration.

A simple taxonomy is used to lay out the space of these systems [NS97], loosely

based on the conceptual model of visualization coordination described in Chapter 3.

Visualizations have two basic classes of actions:

• Select: Users can select and highlight data items in the visualization to express

interest in them, or possibly to initiate other forms of manipulation on them.

• Navigate: Users can navigate the visualization to focus on data items or to

display other data items (e.g. scroll, pan, zoom, slice, rotate, ascend/descend

tree, follow link, open file, etc.). For the purposes of this taxonomy, navigate

also includes the load action to load other data into a visualization as a form of

navigation through the larger data context.

 137

Coordinating a pair of visualizations tightly couples one of these actions in the one

visualization to another action in the other visualization. The taxonomy classifies

coordinations by the three possible combinations of actions (Figure B.1):

1. Select ↔ select

2. Navigate ↔ navigate

3. Select ↔ navigate (which is equivalent to navigate ↔ select due to bi-

directionality)

Select ↔ Select Select ↔ NavigateNavigate ↔ Navigate

Figure B.1: A taxonomy of coordinations

B.1 Select ↔ Select

This coordination tightly couples selecting items in one visualization to selecting

items in another visualization, to help users correlate equivalent or related items. When

users select (highlight, paint, brush) an item (or set of items) in one visualization, the

system immediately highlights the equivalent item (or set), representing the same

underlying data elements, in the other visualization.

Many exploratory data analysis systems use this coordination to visualize high-

dimensional data point sets with multiple coordinated plots. Common examples are

Datadesk [Vel88], SAS Insight, JMP, EDV [EW95], Spotfire [AW95], XGobi [BCS96],

 138

XmdvTool [WA95]. Invention of this brushing-and-linking concept is generally

credited to Prim-9 [FFT74] or Newton [New78]. [Mon89] introduced brushing to GIS

by brushing between plots and geographic choropleth maps. XmdvTool provides the

capability to brush regions in attribute space as well as individual data items. For

example, in Figure B.2 an n-dimensional region is selected in both the plot matrix and

parallel-coordinates graph.

Figure B.2: XmdvTool

For examples with other types of data, the Navigational View Builder [MFH95]

(Figure B.3) brushes nodes in hierarchical information, linking Treemaps (emphasizing

numerical and categorical attributes), ConeTrees (emphasizing structure), and outliners

(emphasizing node names). With Lilac [Bro91], a two-window document editor,

selecting text in the WYSIWYG page window also selects the corresponding text in the

source text window (similar to HTML code).

 139

Figure B.3: Navigational View Builder

An interesting variation is the Attribute Explorer [STD95], which uses additive

encoding of multiple brushes (Figure B.4). It displays multi-dimensional data in a

series of 1-dimensional histograms, and users can select a range in each histogram.

Then, data points are color coded by the number of attribute selections they are

contained in. Points that satisfy more selections are lighter, fewer selections are darker.

Figure B.4: Attribute Explorer

 140

Visage VQE [DRK97] extends brushing to multiple relations. Visualizations

containing joins of relations can be brushed if they share a common relation anywhere

in their join paths. An early prototype of LinkKit [Nor98] demonstrates brushing across

many-to-many joins for exploring authors, publications, and other references (Figure

B.5).

Figure B.5: LinkKit prototype in Elastic Windows

 141

B.2 Navigate ↔ Navigate

This coordination tightly couples navigation in one visualization to simultaneous

navigation in another visualization. This maintains synchronization of visualizations

while navigating (e.g. scrolling, panning, zooming, slicing, traversing, etc.) through

correlated information spaces (e.g. Figure B.6)

1
2

3
4
5

6

7

1

2
3
4

5
6
7

Figure B.6: Synchronized scrolling

Synchronized scrolling tightly couples the scroll bars of two visualizations.

WordPerfect displays a document’s formatting codes in a separate frame adjacent to the

main text that with synchronized scrolling. This approach avoids losing the relationship

between representations and saves users from tedious repetition of scrolling actions in

each frame. With Logos Bible Software, users can simultaneously scroll through

different Bible translations, commentaries, and study guides, which all share a common

ordered hierarchical structure of book, chapter, and verse. SeeDiff [BE96] synchronizes

scrolling through two version of a source code file for analyzing changes (Figure B.7).

 142

DEVise [LRB97] generalizes this synchronized navigation strategy to 2D, allowing

users to synchronously pan and zoom multiple 2D plots with common X and Y axes.

The Neighborhood Viewer [CSP97] (Figure B.8) extends this to 3D slicing by

synchronously panning correlated cross-section, CT, and MRI images through the

human body. Chi et al. [CBR97] (Figure B.9) extends synchronized navigation to

general 3D. It arranges many small 3D visualizations in a spreadsheet grid and

synchronizes their rotation, zooming, etc.

Figure B.7: SeeDiff

 143

Figure B.8: Neighborhood Viewer

Figure B.9: Spreadsheet Visualization

 144

B.3 Select ↔ Navigate

This coordination tightly couples selecting items in one visualization to navigating

in another visualization, and vice versa (i.e. navigate to select). Users can select items

from overviews to navigate to corresponding detailed information in separate

visualizations. Likewise, navigating the detailed visualization indicates the

corresponding selection in the contextual overview (Figure B.10).

 Scroll Bar Table of Contents Index List

Figure B.10: Overview and detail

Overviews provide a global map of information, and detail visualizations provide

detailed information about a small portion. Coordinating the visualizations indicates the

location of and provides a mechanism for navigating the detail from within the context

of the overview. This is advantageous over detail-only browsers since overviews

indicate what information is available, provide context for details, guide browsing,

promote exploration, and help avoid getting lost. This strategy contrasts with

distortion-oriented techniques [LA94], which attempt to show details within the context

 145

of the overview in a single visualization by distorting the view. An important metric is

the zoom factor between the overview selection and detail. Larger zoom factors allow

for more information. While zoom factors for distortion techniques are typically

limited to 5 or less, coordinated visualizations can reach zoom factors of 20 for attribute

spaces [PCH92] and 1000 for data aggregation strategies. Also, several of these

coordinations can be chained together using intermediate visualizations [PCS95] to

multiply zoom factors.

With the Navigational View Builder [MFH95] (Figure B.3), and other web site

visualization tools, users can select any node in a visualization of a large site to display

that web page in a separate browser window. This strategy has become commonplace

in user interface design. It is used in many standard tools such as Microsoft Word and

Windows Explorer. It is also used with frames on web pages. Simultaneous menus

[HKV00] enables users to select from multiple overviews to display results in a single

detail visualization based on all the selections (Figure B.11).

Figure B.11: Simultaneous Menus

 146

A variant of this approach shows details of selections in a new popup window

instead of a given static window, as in the FilmFinder [AS94] (Figure B.12). Selecting

a dot on a scatter plot displays that record’s fields, including pictures. However, this

requires additional clicks to dismiss the popup each time or move it aside.

Figure B.12: FilmFinder

The select-to-navigate coordination can be used to drill down through layers of a

database, with separate visualizations for each layer. CASCADE [SMH96] (Figure

B.13) provides four layers of coordinated visualizations for zooming through 4 different

levels of scale within a large document database: the Docuverse level (collection of up

to 5000 documents), Webview (up to 500 documents), Landmarks (within a single

document), and Preview (individual item in a document, such as a hyperlink).

 147

Figure B.13: CASCADE

For attribute spaces, dragging or resizing a field-of-view indicator (selection) in the

overview is tightly coupled to pan or zoom (navigation) the detail visualization, and

vice versa. Scroll bars, albeit poor overviews of their associated main window, are a

simple 1D example. The Information Mural [JS95] (Figure B.14), SeeSoft [BE96]

(Figure B.15), ValueBars [Chi92], and others [Eic94] provide highly reduced images of

large documents or software code, using color coding and anti-aliasing algorithms, for

navigating 1D document windows with fields-of-view.

The “cursor” link in DEVise [LRB97] links a 2D field-of-view in an overview plot

to the panning control of the axes in a detail plot. Similar 2D approaches are used in

Pad++ portals [BH94] and in PDQ Trees [KPS97] (Figure B.16) for hierarchies laid out

on a 2D surface. Plaisant et al. [PCS95] developed a formal notation for specifying this

coordination for browsing large 2D images that is replicated in many digital imaging

packages such as Adobe Photoshop.

 148

Figure B.14: Information Mural

Figure B.15: SeeSoft

 149

Figure B.16: PDQ Trees

For a 3D volumetric image space, with the Visible Human Explorer [NSP96] users

can rapidly navigate each orthogonal 2D cross-section visualization through the human

body by dragging the corresponding cut lines in the other visualizations, and receive

continuous feedback of contents (Figure B.17).

 150

Figure B.17: Visible Human Explorer

An extension to this approach is to use one visualization to keep a history of

navigation in other visualizations. With select-to-navigate coordination, users can

revisit previous states. PadPrints [HRH98] (Figure B.18) and the Graphical History

Browser [AS95] both maintain iconic node-link diagrams of visited web pages for a

web browser. Utting and Yankelovich [UY89] review several such approaches for

 151

hypertext navigation. They extend their Intermedia system to include a map of

destinations that can be reached from the current page as well, hence providing a

selectable visualization of both history and potential future.

Figure B.18: PadPrints

B.4 Summary

Many coordinated-visualization interfaces have been developed, and have proven to

be very useful and effective. Yet, these are only a small number in comparison to the

myriad different combinations of visualizations and coordinations that are needed for so

many unique users, data, and tasks. Clearly, these many examples serve to point out the

need for Snap-Together Visualization.

 152

Appendix C:
User Study Materials

C.1 Evaluation of Coordination Construction

C.1.1 Background Survey

1. Occupation (position title)
2. Census data experience
3. Computer usage experience (frequency, applications)
4. Relational database concepts (tables, attributes, rows, relationships, keys)
5. Microsoft Access experience, SQL experience (designing DBs, writing queries)
6. Visualization tools experience
7. Programming experience (components, databases, user interfaces, web design)

C.1.2 Verbal Post-Survey

1. Other ideas for browsing this data?
2. Trouble spots in using Snap?
3. Suggestions for improving the Snap user interface?

C.2 Evaluation of Coordination Operation

C.2.1 Data

The information presented to the user in the detail window consisted of the

following statistics for 47 states. The three missing states were Minnesota, Mississippi,

and Missouri.

State: Maryland
Population: 4781468
Families: 1256327
Households: 1749342
Male %: 48.5%
Female %: 51.5%
Urban %: 81.3%

 153

Average Age: 33.1
HS Diploma %: 78.4%
College Degree %: 31.7%
English Speaking %: 84.3%
Average Commute Time: 33
Carpool Commute %: 15.2%
Public Transportation %: 8.1%
Per Capita Income: 17730
Median Family Income: 45034
Median Household Income: 39386
No Income Households %: 15.3%
Average Persons per Family: 3.81
Average Workers per Family: 1.88
Housing Units: 1891917
Vacancy %: 8.2%
Average Bedrooms: 2.73
Average Persons per Unit: 2.73
Median Value: 115500
Median Mortgage: 919
Median Rent: 548
Rent % Household Income: 25.4
Flag Description: The Maryland flag contains the family crest of the
Calvert and Crossland families. Maryland was founded as an English colony in
1634 by Cecil Calvert, the second Lord Baltimore. The black and Gold designs
belong to the Calvert family. The red and white design belongs to the Crossland
family.

C.2.2 Task Sets

Practice Tasks:

What is the Population of Georgia?
Does the information include statistics about the state of Wyoming?
Which of the first four states has the highest xxxx?

Task Group #1:

Question Answer
1. What is the Population of Tennessee? 4,877,185
2. Does the information include statistics about the state of Ohio? Yes
3. Which of the following states has higher Median Family Income:
California or Washington?

CA

4. Which state has Average Commute Time of 31? NJ
5. How many states in the list begin with the letter ‘M’? 5
6. Which of the following 5 states has the highest Median Household
Income: Florida, Rhode Island, Louisiana, Alaska, or New Jersey?

Alaska

 154

7. Does the information include statistics about the state of Minnesota? No
8. Which state has the highest HS Diploma %? Alaska
9. What is the Population of the 6th state from the bottom of the list? VT

562,758

Task Group #2:

Question Answer
1. What is the Population of Texas? 16,986,510
2. Does the information include statistics about the state of Oklahoma? Yes
3. Which of the following states has higher Median Family Income:
Colorado or West Virginia?

CO

4. Which state has Average Commute Time of 32? NM
5. How many states in the list begin with the word ‘New’? 4
6. Which of the following 5 states has the highest Median Household
Income: Georgia, South Carolina, Maine, Arizona, or New Mexico?

GA

7. Does the information include statistics about the state of
Mississippi?

No

8. Which state has the highest College Degree %? Mass
9. What is the Population of the 5th state from the bottom of the list? VA

6,187,358

Task Group #3:

Question Answer
1. What is the Population of Utah? 1,722,850
2. Does the information include statistics about the state of Oregon? Yes
3. Which of the following states has higher Median Family Income:
Connecticut or Wisconsin?

Conn

4. Which state has Average Commute Time of 35? NY
5. How many states in the list begin with the letter ‘O’? 3
6. Which of the following 5 states has the highest Median Household
Income: Hawaii, South Dakota, Maryland, Arkansas, or New York?

MD

7. Does the information include statistics about the state of Missouri? No
8. Which state has the highest English Speaking %? WV
9. What is the Population of the 4th state from the bottom of the list? Wash

4,866,692

 155

C.2.3 Questionnaire for User Interface Satisfaction

User Interface #1:
Comprehensibility: confusing clear
 1 2 3 4 5 6 7 8 9
Ease of Use: difficult easy
 1 2 3 4 5 6 7 8 9
Speed of Use: slow fast
 1 2 3 4 5 6 7 8 9
Overall Satisfaction: terrible wonderful
 1 2 3 4 5 6 7 8 9

User Interface #2:
Comprehensibility: confusing clear
 1 2 3 4 5 6 7 8 9
Ease of Use: difficult easy
 1 2 3 4 5 6 7 8 9
Speed of Use: slow fast
 1 2 3 4 5 6 7 8 9
Overall Satisfaction: terrible wonderful
 1 2 3 4 5 6 7 8 9

User Interface #3:
Comprehensibility: confusing clear
 1 2 3 4 5 6 7 8 9
Ease of Use: difficult easy
 1 2 3 4 5 6 7 8 9
Speed of Use: slow fast
 1 2 3 4 5 6 7 8 9
Overall Satisfaction: terrible wonderful
 1 2 3 4 5 6 7 8 9

Comments:

C.2.4 Statistical Results

Effect F value p
User Interface F(2,442) = 86.2 p < .001
Task F(8,442) = 377 p < .001
UI x Task Interaction F(16,442) = 20.9 p < .001

Figure C.1: Overall 3x9 ANOVA statistics for user performance

 156

 Task
 1 2 3 4 5 6 7 8 9

Detail-Only 9.2
3.0

8.9
3.0

16.6
5.3

12.5
4.7

10.2
5.1

21.2
5.0

79.9
33.2

86.0
23.3

172
32.5

No-
Coordination

2.3
2.3

2.4
0.9

3.2
2.4

9.9
2.7

10.5
4.5

22.2
6.0

77.9
34.7

90.1
40.0

174
41.5

Coordination 1.7
0.9

2.5
1.0

3.4
1.9

5.7
5.8

2.6
0.8

13.9
2.3

39.2
12.4

41.8
13.9

86.2
20.7

3x1 ANOVA
F(2,34), p<

92.9
.001

89.5
.001

86.9
.001

12.5
.001

29.4
.001

23.7
.001

12.2
.001

24.9
.001

47.7
.001

Figure C.2: Mean and standard deviation of user performance times (in seconds)

Figure C.2 shows the significance levels of the one-way ANOVAs for the user

interface factor for each task. It also shows results of the pair-wise t-test comparisons

of user interface treatments within each task. The shaded cells are significantly faster

than the white cells within each task at the p<.005 level. The details of these pair-wise

comparisons are shown in Figure C.3, the output of the analysis using the SPSS

statistical software package. The user-interface treatments and task treatments are

coded as follows:

User-Interface Treatments
1 Detail-Only
2 No-Coordination
3 Coordination

Task Treatments

1 Coverage-yes
2 Coverage-no
3 Overview patterns
4 Visual lookup
5 Nominal lookup
6 Compare-2
7 Compare-5
8 Search
9 Scan

 157

6.894* .633 .000 5.059 8.730
7.544* .654 .000 5.649 9.440

-6.894* .633 .000 -8.730 -5.059
.650 .548 .252 -.938 2.238

-7.544* .654 .000 -9.440 -5.649
-.650 .548 .252 -2.238 .938
6.472* .710 .000 4.413 8.531
6.372* .570 .000 4.720 8.024

-6.472* .710 .000 -8.531 -4.413
-.100 .304 .746 -.982 .782

-6.372* .570 .000 -8.024 -4.720
.100 .304 .746 -.782 .982

13.344* 1.355 .000 9.419 17.270
13.133* 1.250 .000 9.511 16.755

-13.344* 1.355 .000 -17.270 -9.419
-.211 .798 .795 -2.524 2.102

-13.133* 1.250 .000 -16.755 -9.511
.211 .798 .795 -2.102 2.524

2.639 1.310 .060 -1.157 6.435
6.783* 1.583 .000 2.197 11.370

-2.639 1.310 .060 -6.435 1.157
4.144* 1.187 .003 .703 7.586

-6.783* 1.583 .000 -11.370 -2.197
-4.144* 1.187 .003 -7.586 -.703
-.267 1.318 .842 -4.087 3.554
7.628* 1.125 .000 4.367 10.889
.267 1.318 .842 -3.554 4.087

7.894* 1.045 .000 4.867 10.922
-7.628* 1.125 .000 -10.889 -4.367
-7.894* 1.045 .000 -10.922 -4.867
-.983 1.183 .417 -4.411 2.444
7.250* 1.177 .000 3.838 10.662
.983 1.183 .417 -2.444 4.411

8.233* 1.527 .000 3.807 12.660
-7.250* 1.177 .000 -10.662 -3.838
-8.233* 1.527 .000 -12.660 -3.807
2.000 11.242 .861 -30.581 34.581

40.778* 8.098 .000 17.307 64.249
-2.000 11.242 .861 -34.581 30.581
38.778* 8.270 .000 14.809 62.747

-40.778* 8.098 .000 -64.249 -17.307
-38.778* 8.270 .000 -62.747 -14.809
-4.111 8.470 .634 -28.660 20.437
44.167* 4.483 .000 31.173 57.160
4.111 8.470 .634 -20.437 28.660

48.278* 8.993 .000 22.213 74.343
-44.167* 4.483 .000 -57.160 -31.173
-48.278* 8.993 .000 -74.343 -22.213

-.722 10.914 .948 -32.354 30.909
86.722* 10.422 .000 56.517 116.928

.722 10.914 .948 -30.909 32.354
87.444* 9.506 .000 59.894 114.995

-86.722* 10.422 .000 -116.928 -56.517
-87.444* 9.506 .000 -114.995 -59.894

UI (J)
2
3
1
3
1
2
2
3
1
3
1
2
2
3
1
3
1
2
2
3
1
3
1
2
2
3
1
3
1
2
2
3
1
3
1
2
2
3
1
3
1
2
2
3
1
3
1
2
2
3
1
3
1
2

UI (I)
1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

Task
Task 1

Task 2

Task 3

Task 4

Task 5

Task 6

Task 7

Task 8

Task 9

Mean
Difference

(I-J) Std. Error Sig.a Lower Bound Upper Bound

99% Confidence Interval for
Differencea

Based on estimated marginal means
The mean difference is significant at the .01 level.*.

Adjustment for multiple comparisons: Least Significant Diff (equivalent to no adjustments).a.

Figure C.3: Pair-wise t-test comparisons of user interfaces on user performance

 158

Effect F value p
User Interface F(2,187) = 70.2 p < .001
Satisfaction Category F(3,187) = 9.2 p < .001
UI x Category F(6,187) = 11.1 p < .001

Figure C.4: Overall 3x4 ANOVA statistics for subjective satisfaction

 Satisfaction Category
 Comprehen-

sibility Ease of Use Speed of
Use Overall

Detail-Only 6.4
2.4

4.1
2.4

2.9
1.5

3.3
1.4

No-
Coordination

6.6
2.2

5.1
1.8

4.8
1.7

4.8
1.7

Coordination 8.3
1.2

8.1
0.9

8.1
1.1

7.9
1.1

3x1 ANOVA
F(2,34), p<

9.4
.001

33.6
.001

83.4
.001

103.5
.001

Figure C.5: Mean and standard deviation of subjective satisfaction ratings

-.111 .511 .830 -1.591 1.369
-1.833* .459 .001 -3.164 -.503

.111 .511 .830 -1.369 1.591
-1.722* .449 .001 -3.023 -.422
1.833* .459 .001 .503 3.164
1.722* .449 .001 .422 3.023

-1.000 .443 .037 -2.283 .283
-3.944* .591 .000 -5.658 -2.231
1.000 .443 .037 -.283 2.283

-2.944* .454 .000 -4.259 -1.630
3.944* .591 .000 2.231 5.658
2.944* .454 .000 1.630 4.259

-1.833* .406 .000 -3.011 -.656
-5.167* .398 .000 -6.321 -4.013
1.833* .406 .000 .656 3.011

-3.333* .412 .000 -4.528 -2.139
5.167* .398 .000 4.013 6.321
3.333* .412 .000 2.139 4.528

-1.556* .283 .000 -2.375 -.736
-4.611* .354 .000 -5.636 -3.586
1.556* .283 .000 .736 2.375

-3.056* .338 .000 -4.035 -2.076
4.611* .354 .000 3.586 5.636
3.056* .338 .000 2.076 4.035

UI (J)
2
3
1
3
1
2
2
3
1
3
1
2
2
3
1
3
1
2
2
3
1
3
1
2

UI (I)
1

2

3

1

2

3

1

2

3

1

2

3

Category
COMP

EASE

SPEED

OVERALL

Mean
Difference

(I-J) Std. Error Sig.a Lower Bound Upper Bound

99% Confidence Interval for
Differencea

Based on estimated marginal means
The mean difference is significant at the .01 level.*.

Adjustment for multiple comparisons: Least Significant Diff (equivalent to no adjustments).a.

Figure C.6: Pair-wise t-test comparisons of user interfaces on subjective satisfaction

 159

References *

[AS94] Ahlberg, C., Shneiderman, B., “Visual Information Seeking: Tight Coupling
of Dynamic Query Filters with Starfield Displays”, Proc. ACM CHI'94
Conference - Human Factors in Computing Systems, pp. 313-317, (1994).

[AW95] Ahlberg, C., Wistrand, E., “IVEE: An Information Visualization and
Exploration Environment”, Proc. IEEE Information Visualization ’95, pp.
66-73, (1995).

[AEP96] Antis, J., Eick, S., Pyrce, J., “Visualizing the structure of relational
databases”, IEEE Software, 13(1): 72-79, (January 1996).

[AS95] Ayers, E. and Stasko, J., “Using graphic history in browsing the World Wide
Web”, Proc. Fourth International World Wide Web Conference, (1995).

[BWK00] Baldonado, M., Woodruff, A., Kuchinsky, A., “Guidelines for Using
Multiple Views in Information Visualization”, Proc. Advanced Visual
Interfaces 2000, (2000).

[BE96] Ball, T., Eick, S., “Software visualization in the large”, IEEE Computer,
29(4):33-43, (April 1996).

[BW90] Beard, D., Walker, J., “Navigational techniques to improve the display of
large two-dimensional spaces”, Behaviour & Information Technology, 9(6),
pp. 451-466, (1990).

[BC87] Becker, R., Cleveland, W., “Brushing scatterplots”, Technometrics, 29(2),
pp. 127-142, (1987).

[BH94] Bederson, B., Hollan, J., “Pad++: A Zooming Graphical Interface for
Exploring Alternate Interface Physics”, Proc. of ACM UIST’94 - User
Interface Software and Technology, pp. 17-26, (1994).

[Bor86] Borning, A., “Constraint-Based Tools for Building User Interfaces”, ACM
Transactions on Graphics, 5(4), pp. 345-374, (October 1986).

[Bro91] Brooks, K., “Lilac: A Two-View Document Editor”, IEEE Computer, 24(6),
pp. 7-19, (June 1991).

[BCS96] Buja, A., Cook, D., Swayne, D., “Interactive High-Dimensional Data
Visualization”, Journal of Computational and Graphical Statistics, 5(1), pp.
78-99, (1996).

 160

[CMS99] Card, S., Mackinlay, J., Shneiderman, B. (editors), Readings in Information
Visualization: Using Vision to Think, Morgan Kaufmann, (1999).

[CPF84] Card, S., Pavel, M., Farrell, J., “Window-based computer dialogues”, Proc.
INTERACT '84, First IFIP Conference on Human-Computer Interaction,
London, UK, pp. 355-359, (1984).

[CSP97] Carlis, J., Safonov, A., Perrin, D., Konstan, J., “The Neighborhood Viewer:
A Paradigm for Exploring Image Databases”, Proc. Companion of ACM
CHI’97 Conference - Human Factors in Computing Systems, pp. 299-300,
(1997).

[CBR97] Chi, E. H., Barry, P., Riedl, J., Konstan, J., “A spreadsheet approach to
information visualization”, Proc. IEEE Information Visualization ‘97, pp.
17-24, (1997).

[Chi92] Chimera, R., “Value Bars: An Information Visualization and Navigation
Tool for Multi-Attribute Listings”, Proc. ACM CHI ‘92, pp. 293-294,
(1992).

[CS94] Chimera, R., Shneiderman B., “An exploratory evaluation of three interfaces
for browsing large hierarchical tables of contents”, ACM Transactions on
Information Systems, 12(4), pp. 383-406, (Oct. 1994).

[CHH99] Cox, K., Hibino, S., Hong, L., Mockus, A., Wills, G., “InfoStill: A Task-
Oriented Framework for Analyzing Data Through Information
Visualization”, Bell Labs technical report, http://www.bell-
labs.com/org/11359/spr-vis.html, (1999).

[DRK97] Derthick, M., Roth, S., Kolojejchick, J., “Coordinating Declarative Queries
with a Direct Manipulation Data Exploration Environment”, Proc. IEEE
Information Visualization ‘97, pp. 65-72, (1997).

[DC95] Dewan, P., Choudhary, R., “Coupling the User Interfaces of a Multiuser
Program”, ACM Transactions on Computer-Human Interaction, 2(1), pp. 1-
39, (March 1995).

[DAP97] Dey, A., Abowd, G., Pinkerton, M., Wood, A., “CyberDesk: A Framework
for Providing Self-Integrating Ubiquitous Software Services”, Proc. ACM
UIST ‘97, pp. 75-76, (1997).

[DP95] Dumas, J., Parsons, P., “Discovering the way programmers think about new
programming environments”, Communications of the ACM, 38(6), pp. 45-
56, (June 1995).

[Eic94] Eick, S., “Data Visualization Sliders,” Proc. ACM UIST ‘94, pp. 119-120,
(1994).

 161

[EW95] Eick, S., Wills, G., “High Interaction Graphics”, European Journal of
Operations Research, #81, pp. 445-459, (1995).

[FFT74] Fisherkeller, M., Friedman, J., and Tukey, J., “Prim-9: An Interactive
Multidimensional Data Display And Analysis System" Slac-Pub-1408,
Stanford Linear Accelerator Center, Stanford, California, (1974). Reprinted
in Cleveland, W., McGill, R., eds. Dynamic Graphics for Statistics,
Wadsworth & Brooks, California, (1988).

[FNP99] Fredrikson, A., North, C., Plaisant, C., Shneiderman, B., "Temporal,
Geographical and Categorical Aggregations Viewed through Coordinated
Displays: a Case Study with Highway Incident Data", Proc. ACM CIKM '99
Workshop on New Paradigms in Information Visualization and
Manipulation, (1999).

[Fur86] Furnas, G., “Genralized fisheye views”, Proc. ACM CHI ’86, pp. 16-23,
(1986).

[Hae88] Haeberli, P., “ConMan: a visual programming language for interactive
graphics”, Proc. ACM SigGraph ’88, pp. 103-111, (1988).

[HRH98] Hightower, R., Ring, L., Helfman, J., Bederson, B., Hollan, J., “Graphical
Multiscale Web Histories: A Study of PadPrints”, ACM Conference on
Hypertext 1998, (1998).

[Hil92] Hill, R., “The Abstraction-Link-View Paradigm: Using Constraints to
Connect User Interfaces to Applications”, Proc. ACM CHI’92, pp. 335-342,
(1992).

[HKV00] Hochheiser, H., Kositsyna N., Ville, G., Shneiderman, B., “Performance
Benefits of Simultaneous over Sequential Menus as Task Complexity
Increases”, to appear in IJHCI, (2000).

[HS99] Hochheiser, H., Shneiderman, B., “Understanding patterns of user visits to
web sites: interactive starfield visualizations of WWW log data”,
Proceedings ASIS '99 Annual Conference, (1999).

[HM90] Hudson, S., Mohamed, S., “Interactive Specification of Flexible User
Interface Displays”, ACM Transactions on Information Systems, 8(3): 269-
288, (July 1990).

[IDC99] International Data Corporation, “Component Architecture for Rapid
Delivery of Web-Based Analytic Applications: The AlphaBlox Approach”,
www.alphablox.com, (1999).

[ISB95] Isakowitz, T., Stohr, E., Balasubramanian, P., “RMM: a methodology for
structured hypermedia design”, Communications of the ACM, 38(8), pp. 34-
44, (August 1995).

 162

[JBO94] Jacobson, A., Berkin, A., Orton, M., “LinkWinds: interactive scientific data
analysis and visualization”, Communications of the ACM, 37(4), pp. 43-52,
(April 1994).

[JS95] Jerding, D., Stasko, J., “The Information Mural: A Technique for Displaying
and Navigating Large Information Spaces”, Proc. IEEE Symposium on
Information Visualization, pp. 43-50, (October 1995).

[KS97] Kandogan, E., Shneiderman, B., “Elastic Windows: evaluation of multi-
window operations”, Proc. ACM CHI’97, pp. 250-257, (March 1997).

[KTS00] Kang, H., Tong, J., Shneiderman, B., “Visualization Methods for Personal
Photo Collections: Browsing and Searching in the PhotoFinder”, University
of Maryland, Computer Science Dept. Technical Report, (March 2000).

[Kon97] Konstan, J., personal communication in reference to [CSP97], (1997).

[KPS97] Kumar, H., Plaisant, C., Shneiderman, B., “Browsing Hierarchical Data with
Multi-Level Dynamic Queries and Pruning”, IJHCI, vol. 46, pp. 103-124,
(1997).

[LR96] Lamping, J., Rao, R., “The Hyperbolic Browser: A Focus + Context
Technique for Visualizing Large Hierarchies”, Journal of Visual Languages
and Computing, 7(1), pp. 33-55, (1996).

[LA94] Leung, Y., Apperley, M., “A review and taxonomy of distortion-oriented
presentation techniques”, ACM Transactions on Computer-Human
Interaction, 1(2):126–160, 1994.

[LRB97] Livny, M., Ramakrishnan, R., Beyer, K., Chen, G., Donjerkovic, D.,
Lawande, S., Myllymaki, J., Wenger, K., “DEVise: integrated querying and
visual exploration of large datasets”, Proc. ACM SIGMOD’97, pp. 301-312,
(1997).

[Log93] Logos Research Systems, Inc., Logos Bible Software User Manual,
http://www.logos.com/, (1993).

[MSB90] McDonald, J., Stuetzle, W., Buja, A., “Painting Multiple Views of Complex
Objects”, Proc. ECOOP/OOPSLA’90, pp. 245-257, (1990).

[MHG00] Mockus, A., Hibino, S., Graves, T., “A Web-Based Approach to Interactive
Visualization in Context”, Proc. AVI 2000 Conference, ACM, (May 2000).

[Mon89] Monmonier, M., “Geographic brushing: Enhancing exploratory analysis of
the scatterplot matrix”, Geographical Analysis, 21(1), pp. 81-84, (1989).

[Moo91] Moore, G., Crossing the Chasm: Marketing and Selling High-Tech Products
to Mainstream Customers, HarperBusiness, (1991).

 163

[MFH95] Mukherjea, S., Foley, J., Hudson, S., “Visualizing Complex Hypermedia
Networks through Multiple Hierarchical Views”, Proc. ACM CHI'95, pp.
331-337, (1995).

[MMM97] Myers, B., McDaniel, R., Miller, R., Ferrency, A., Faulring, A., Borison, E.,
Kyle, B., Mickish, A., Klimovitski, A., Doane, P., “The Amulet
Environment: New Models for Effective User Interface Software
Development”, IEEE Transactions on Software Engineering, 23(6): 347-
365, (June 1997).

[NM91] Nardi, B., Miller, J., “Twinkling lights and nested loops: distributed problem
solving and spreadsheet development”, Intl. Journal of Man-Machine
Studies, 34(2): 161-184, (1991).

[New78] Newton, C., “Graphics: from alpha to omega in data analysis”, Proc.
Symposium on Graphical Representation of Multivariate Data, Wang,
editor, Academic Press, pp. 59-92, (Feb 1978).

[NWS86] Norman, K., Weldon, L., Shneiderman, B., “Cognitive layouts of windows
and multiple screens for user interfaces”, Intl Journal of Man-Machine
Studies, 25, pp. 229-248, (August 1986).

[NSP96] North, C., Shneiderman, B., Plaisant, C., “User Controlled Overviews of an
Image Library: A Case Study of the Visible Human”, Proc. ACM Digital
Libraries '96 Conference, ACM Press, pp. 74-82, (1996). Reprinted in
Readings in Information Visualization: Using Vision to Think, Card,
Mackinlay, Shneiderman (editors), Morgan Kaufmann, (1999).

[NS97] North, C., Shneiderman, B., “A Taxonomy Of Multiple Window
Coordinations”, University of Maryland, College Park, Dept of Computer
Science Technical Report #CS-TR-3854, (1997).

[Nor98] North, C., “Robust, End-User Programmable, Multiple-Window
Coordination”, Proc. ACM CHI'98 Conference, pg. 60-61, (1998).

[NS99] North, C., Shneiderman, B., “Snap-Together Visualization” (Video), HCIL
Video Report 1999, University of Maryland, Computer Science Dept,
(1999).

[NS00a] North, C., Shneiderman, B., “Snap-Together Visualization: A User Interface
for Coordinating Visualizations via Relational Schemata”, Proc. Advanced
Visual Interfaces 2000, (May 2000).

[NS00b] North, C., Shneiderman, B., “Snap-Together Visualization: Can Users
Construct and Operate Coordinated Views?”, to appear in Intl. Journal of
Human Computer Studies, (2000).

 164

[PCH92] Plaisant, C., Carr, D., Hasegawa, H., “When an intermediate view matters: a
2D browser experiment”, University of Maryland Computer Science Dept
Technical Report #2980, (October 1992).

[PCS95] Plaisant, C., Carr, D., Shneiderman, B., “Image browsers: taxonomy,
guidelines, and informal specifications”, IEEE Software, 12(2), pp. 21-32,
(March 1995).

[PRR99] Plaisant, C., Rose, A., Rubloff, G., Salter, R., Shneiderman, B., “The design
of history mechanisms and their use in collaborative educational
simulations”, Proc. of the Computer Support for Collaborative Learning,
CSCL' 99, pp. 348-359, (May 1999).

[RLS96] Roth, S., Lucas, P., Senn, J., Gomberg, C., Burks, M., Stroffolino, P.,
Kolojejchick, J., Dunmire, C., “Visage: a user interface environment for
exploring information”, Proc. Information Visualization, IEEE, pp. 3-12,
(October 1996).

[Shn92] Shneiderman, B. “Tree visualization with treemaps: a 2-d space-filling
approach”, ACM Transactions on Graphics, 11(1), pp. 92-99, (Jan. 1992).

[Shn98] Shneiderman, B., Designing the User Interface: Strategies for Effective
Human-Computer Interaction, Third Edition, Addison-Wesley, (1998).

[Shn00] Shneiderman, B., “Creating Creativity: User Interfaces for Supporting
Innovation”, to appear in ACM TOCHI, HCI in the Millenium, ACM, New
York, (March 2000).

[SSS86] Shneiderman, B., Shafer, P., Simon, R., Weldon, L., “Display strategies for
program browsing: concepts and an experiment”, IEEE Software, 3(3), pp.
7-15, (March 1986).

[STD95] Spence, R., Tweedie, L., Dawkes, H., Su, H., “Visualisation for Functional
Design”, Proceedings Information Visualization '95, pp. 4-10, (1995).

[SMH96] Spring, M., Morse, E., Heo, M., “Multi-level Navigation of a Document
Space”, Proc. Leveraging Cyberspace Conference, (October 1996).

[UY89] Utting, K., Yankelovich, N., “Context and Orientation in Hypermedia
Networks”, ACM Transactions on Information Systems, 7(1), pp. 58-84,
(January 1989).

[Vel88] Velleman, P., The Datadesk Handbook, Odesta Corporation, (1988).

[Vin97] Vinoski, S., “CORBA: Integrating Diverse Applications Within Distributed
Heterogeneous Environments”, IEEE Communications, 14(2), (Feb. 1997).

 165

[WA95] Ward, M., Allen, M., “High dimensional Brushing for Interactive
Exploration of Multivariate Data”, Proc. IEEE Visualization ’95, pp. 271-
278, (1995).

[WH87] Wiecha, C., Henrion, M., “Linking Multiple Program Views Using a Visual
Cache”, Human-Computer Interaction - INTERACT‘87, pp. 689-694,
(1987).

[Wil96] Wills, G., “Selection: 524,288 Ways to Say ‘This is Interesting’”, Proc.
Information Visualization ‘96, IEEE, pp. 54-60, (1996).

[Woo84] Woods, D., “Visual Momentum: a concept to improve the cognitive
coupling of person and computer”, Int. J. Man-Machine Studies, Vol. 21,
229-244, (1984).

